Skip to main content

A Geometric Consistency Model of Virtual Camera for Vision-Based SLAM Simulation

  • Conference paper
  • First Online:
  • 682 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12567))

Abstract

The performance of vision-based simultaneous localization and mapping (VSLAM) algorithms is affected by physical space, environment variables, and other factors, which require massive verifications in diverse scenarios in the real world. However, collecting visual data for VSLAM algorithms in the real world is an expensive and time-consuming process. With the development of rendering technology, it is possible to directly generate data sets using synthetic images with a virtual camera using computer simulation. In order to simulate realistic images with a virtual camera, precise modeling of the geometric characteristics of the vision sensor must be addressed. In this paper, we propose a geometric consistency model considering both the projection characteristics and the lens distortion of a camera. We also provide an efficient implement of the proposed geometric consistency model, which can be used to generate data sets or evaluate algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bettens, A.M., et al.: UnrealNavigation: simulation software for testing SLAM in virtual reality. In: AIAA Scitech 2020 Forum, p. 1343 (2020)

    Google Scholar 

  2. Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., Scaramuzza, D.: Are we ready for autonomous drone racing? The UZHFPV drone racing dataset. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  3. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, vol. 78, pp. 1–16. PMLR (2017)

    Google Scholar 

  4. Drap, P., Lefèvre, J.: An exact formula for calculating inverse radial lens distortions. Sensors 16(6), 807 (2016)

    Article  Google Scholar 

  5. Heikkila, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (2000)

    Article  Google Scholar 

  6. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004) (2004)

    Google Scholar 

  7. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of vicon system positioning performance. Sensors 17(7), 1591 (2017)

    Article  Google Scholar 

  8. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  9. Pei, L., et al.: IVPR: an instant visual place recognition approach based on structural lines in manhattan world. IEEE Trans. Instrum. Meas. 69(7), 4173–4187 (2019)

    Article  Google Scholar 

  10. Qiu, W., et al.: UnrealCV: virtual worlds for computer vision. In: Proceedings of the 25th ACM International Conference on Multimedia (2017)

    Google Scholar 

  11. Ricolfe-Viala, C., Sanchez-Salmeron, A.J.: Lens distortion models evaluation. Appl. Opt. 49(30), 5914–5928 (2010)

    Article  Google Scholar 

  12. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  13. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  14. Wen, F., Pei, L., Yang, Y., Yu, W., Liu, P.: Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans. Comput. Imaging 3(4), 566–579 (2017)

    Article  MathSciNet  Google Scholar 

  15. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 10, 965–980 (1992)

    Article  Google Scholar 

  16. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a realistic and rich 3D environment. arXiv preprint arXiv:1801.02209 (2018)

  17. Zhu, Z., et al.: Real-time indoor scene reconstruction with RGBD and inertial input. In: Proceeding of 2019 IEEE International Conference on Multimedia and Expo (ICME 2019), Shanghai, China (2019)

    Google Scholar 

  18. Zou, D., Wu, Y., Pei, L., Ling, H., Yu, W.: StructVIO: visual-inertial odometry with structural regularity of man-made environments. IEEE Trans. Robot. 35(4), 999–1013 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Nature Science Foundation of China (NSFC) under Grant 61873163, Grant 61402283, and the Shanghai Science and Technology Committee under Grant 20511103103, and Equipment Pre-Research Field Foundation under Grant 61405180205, Grant 61405180104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y. et al. (2021). A Geometric Consistency Model of Virtual Camera for Vision-Based SLAM Simulation. In: Meng, X., Xie, X., Yue, Y., Ding, Z. (eds) Spatial Data and Intelligence. SpatialDI 2020. Lecture Notes in Computer Science(), vol 12567. Springer, Cham. https://doi.org/10.1007/978-3-030-69873-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69873-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69872-0

  • Online ISBN: 978-3-030-69873-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics