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Abstract. Visual inspection of electrocardiograms (ECGs) is a com-
mon clinical practice to diagnose heart diseases (HDs), which are still
responsible for millions of deaths globally every year. In particular, my-
ocardial infarction (MI) is the leading cause of mortality among HDs.
ECGs reflect the electrical activity of the heart and provide a quicker
process of diagnosis compared to laboratory blood tests. However, still
it requires trained clinicians to interpret ECG waveforms, which poses
a challenge in low-resourced healthcare systems, such as poor doctor-
to-patient ratios. Previous works in this space have shown the use of
data-driven approaches to predict HDs from ECG signals but focused
on domain-specific features that are less generalizable across patient and
device variations. Moreover, limited work has been conducted on the
use of longitudinal information and fusion of multiple ECG leads. In
contrast, we propose an end-to-end trainable solution for MI diagnosis,
which (1) uses 12 ECG leads; (2) fuses the leads at data-level by stack-
ing their spectrograms; (3) employs transfer learning to encode features
rather than learning representations from scratch; and (4) uses a recur-
rent neural network to encode temporal dependency in long duration
ECGs. Our approach is validated using multiple datasets, including tens
of thousands of subjects, and encouraging performance is achieved.

Keywords: Myocardial infarction - Electrocardiograms - Deep learning
- Fusion

1 Introduction

Myocardial infarction (MI), commonly known as a heart attack, is the lead-
ing cause of cardiovascular deaths worldwide [24]. Severity of MI relates to its
damaging perfusion impact resulting from blocks in coronary arteries, which
interrupts the supply of oxygen and nutrients to the body [12]. It often takes
hours to observe the impact of MI in blood samples as the cardiac enzymes are
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Fig. 1: (a) Conventional mounts for the 12 ECG leads, (b) Clinical visualisation
of 12-lead ECG by radiologists (©ecgpedia.org.

elevated [6]. As a result, electrocardiogram (ECG) waveform inspection (by car-
diologists) has become a common clinical practice to screen MI, which partly
benefits from quicker and non-invasive acquisition of these waveforms, especially
in settings with less equipped laboratories to analyse blood samples. ECG wave-
forms represent the electrical activity of the heart from continuous polarisation
and depolarisation of the atria and ventricle over time. The conventional 12-lead
ECG waveforms contain the electrical signals acquired from different perspec-
tives (see Fig. 1 (a)). An example of visualisation of these ECG signals as seen
by a cardiologist is shown in Fig. 1 (b).

Inspection of ECGs provides a faster diagnosis process compared to blood
sample analysis. However, the manual inspection of ECG signals is highly sub-
jective depending on the expertise of the clinicians. This problem becomes severe
in healthcare systems associated with inadequate medical experts, particularly
in developing countries. Thus, the development of an intelligent diagnosis sup-
port system that can analyse ECG waveforms automatically is a practically well
motivated task in healthcare [10, 20, 23].
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The majority of existing methods for automated detection of MI from ECG
traces, have focused on analysing morphological changes of the signal, such as
QRS complex and P- and T-waves [16, 9]. In these methods, handcrafted features
are extracted from the ECG waveforms in order to make the classification us-
ing domain-expert rule-based thresholding [1], or by using data-driven machine
learning (ML) models [14]. These manual feature encoding techniques necessitate
extensive pre-processing steps aimed at filtering artefacts from the waveforms.
Moreover, manual design (handcrafting) of features requires domain-specific ex-
pertise, resulting in a time-consuming and tedious model development process.
The handcrafted features proposed to classify HDs often vary across existing
works in the literature, which suggests the lack of common and generalisable
features to detect HDs across variations in patient and device characteristics.

On the other hand, deep learning methods can avoid the manual feature
engineering step as they can automatically learn discriminative features for a
specific task. Deep learning methods have achieved state-of-the-art performance
in a wide range of application domains such as natural language processing
and computer vision. Clinical tasks that involve medical image analysis, have
been reported to benefit from automated decision support systems that employ
deep learning [15]. Existing works on HD detection from ECG readings have
also reported high accuracies whilst at the same time reducing the level of ex-
pert input required [3], [8], [5], [13], [22]. Different architectures of deep learning
could be considered for HD detection, but convolutional neural networks (CNNs)
have been the most frequently employed [18], [5], [13]. Generally, existing deep
learning methods for HD detection are limited to using only a single or a few
leads of ECG waveforms, despite the fact that multiple ECG leads are under-
stood to contain more heart-related information that can be used for improved
diagnoses [18]. Moreover, effectively combining the distinctive characteristics of-
fered by each ECG lead, e.g., using fusion techniques, is not well studied in
the literature [4]. Though ECG waveforms involve periodic patterns over time,
longer ECG duration might help to understand the temporal dynamics of the
waveforms, e.g., through using recurrent neural networks (RNNs). In addition,
existing methods are mostly validated using a small cohort of patients, which is
often a bottleneck in proving the generalisability of existing methods [2], [21].
Automatic learning of features from raw ECG waveforms could also necessitate
a need for larger training datasets and computational overhead.

In this paper, we propose an end-to-end trainable MI diagnosis system that
employs a spectral-longitudinal model from ECG waveforms. The transfer learn-
ing approach, applied through the use of existing computer vision networks to
encode discriminative features to detect MI patients, circumventing the need
to manually craft features. In order to utilise the multi-perspective information
available in conventional 12-lead ECG waveforms, we employ early fusion by
stacking the frequency-time representations of the ECG leads. Additionally, we
use recurrent neural networks to exploit the temporal information available in
long ECG waveforms. For validation, we have used a large and private collection
of ECG waveforms of more than 15,000 MI patients. For comparative purposes,



4 G. Abebe Tadesse et al.

we have also validated our proposed model on the publicly available and com-
monly used PTB Diagnostic ECG database [11].

The remainder of this paper is organised as follows: Section 2 formulates
the problem and presents the proposed spectral-longitudinal framework and de-
scribes its components in detail. Section 3 describes the experiments, that is the
datasets considered and model parameter setup, as well as the results obtained
and discussion. Finally, concluding remarks are presented in Section 4.

2 Owur Approach

In this section, we present our end-to-end machine learning pipeline to model
and predict MI diagnosis from 12-lead ECG waveforms, by circumventing the
need to manually craft features.

2.1 Overview

Figure 2 shows the overview of our proposed approach. Let D denote a dataset
that contains the 12-lead ECG waveforms of N patients who have been tested
for MI, i.e., D = {R;}}¥,, we develop an ML binary classification algorithm to
identify the subset of patients with MI, from those who do not have MI. The 12
leads are composed of the six limb leads (I, 11,11I,aV R,aV L, and aV F') and the
six precordial leads (V7,- - , Vi), as illustrated in Fig. 1 (a)). Thus, the ECG data
of the i*" patient can be expressed as R; = (r},--- ,r}2). The proposed approach
outputs s;, which is the prediction probability of a patient being diagnosed with
MI. We also employ early fusion of information from multiple leads, by combining
or stacking their spectrograms similarly to how a clinician would view a 12 lead
ECG trace (as shown in Fig. 1 (b)) which is then followed by either a spectral
S(+), longitudinal £(-) or joint spectral-longitudinal ¥(-) model.

The pre-processing step concerns removing noise and movement artefacts
from the ECGs, using a band-pass filter. Furthermore, an overlapping window
was applied to generate samples from each lead waveform. Given a time series
of ECG waveform for a particular lead, r! € R;, we extracted multiple samples
(windows) from each lead in a patient, i.e., r! = (ulj,uly, -~ ,ul, -+ uly),
where W is the number of windows extracted from ri. Note that for the purposes
of readability, we hereafter drop the subscript 3.

We then employ a fast Fourier transform, 7(-), to map the ECG waveform,
t! | into a frequency-time representation as a spectrogram, i.e. 2% = T(t!))) (see
Fig. 3). A spectrogram encodes the frequency-time characteristics of the ECG
waveforms, and it is hypothesised that a spectrogram of an MI ECG would ex-
hibit different patterns than that from a healthy subject. Another advantage
of using a spectral-based data representation is the generalisation it can offer,
as it would eliminate variations in ECG device specifications such as sampling
rates and mounting positions [17]. Furthermore, the 2-D representation of spec-
trograms produces a visualisation of the ECG signals, enabling the application
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Fig.2: Overview of the proposed approach. First, a spectral representation is
obtained from each lead followed by early data fusion of these spectrograms via
stacking. Next, existing computer vision networks are utilised to extract features
from their hidden layers via transfer learning. Finally, modelling is performed by
either a spectral, longitudinal or our proposed joint spectral-longitudinal model.
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Fig. 3: Examples of a 2-second aVR lead ECG waveform (top) and its corre-
sponding spectrograms (bottom) for a MI and healthy subject, respectively.

of image-based CNNs architectures. These models are well suited to encode dis-
criminative features from the captured ECGs, and importantly, transfer learning
can be employed by taking advantage of powerful pre-trained networks from the
computer vision application domain. Thereby reducing the amount of data that
would have been required if models were trained from scratch.

Moreover, each ECG lead measures the electrical activity of the heart from
different angles or orientations [18]. Consideration of multiple leads therefore
offers increased diagnostic information, which could be effectively utilised to
better discriminate between MI and non-MI. For this purpose, we employ a data-
level fusion scheme at the early stages of the pipeline as shown in Fig. 2, which
avoids the need to model each lead separately. The stacking of spectrograms for
the different leads has been motivated by the standard ECG manufacture format
as shown in Fig. 1 (a). Moreover, early data fusion enables feature encoding step
to learn joint features from multiple leads. The output of the early fusion is
represented by Ay:

0y, Q7R Q01 00
Aw _ Qi,l, Qﬁ)‘/L’ 91‘527 “st
QUI QaVF V3 V6

)

where A,, is the output of the early fusion.

Finally, after early fusion is performed, spectral modelling - S(+), is applied
through the use of CNNs to encode the frequency-time characteristics of the
stacked spectrogram - A,,. We propose employing cross-domain transfer learning
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by using existing computer vision networks, e.g., GoogLeNet [19], to encode
dense features taken from their hidden layers, i.e. t,, = S(A,). This helps to
avoid training a dedicated spectral-based CNN from scratch, which is a process
that requires enormous amount of training data, computational resources and
time.

2.2 Modelling spectral and longitudinal characteristics

A high-dimensional feature vector, t,, € R”, is obtained for each sample (stacked
spectrogram of multiple-leads) using GoogLeNet via transfer learning. This fea-
ture vector is then served as input to the classification model to provide pre-
diction of the diagnosis. Three approaches of the classification model will be
discussed below: Spectral, Longitudinal and Spectral-longitudinal.

Spectral model - S(-), takes t,, as input and only involves a dense layer (with
k neurons) followed by the softmax layer to provide the diagnosis output. The
dense layer projects t,, € R" into 1,, € R", where 7 < k as

1, = O’(Wlttw -+ bl), (1)

where o(-) is an element-wise activation function, Wj; € R™** is the weight
matrix associated with the dense layer and the deep feature t,,, and b; € R” is
a bias vector. Finally, a sigmoid-based output layer is employed that provides
the prediction probability vector s,, € R as

ewsllw

eWsllu/ —+ 1,

Sw = (2)
where W, € R'*7 is the weight matrix associated with the softmax layer and
the dense layer output 1.

During training, the binary cross entropy loss, Lg, is applied to iteratively
minimise the classification error as

B
1
Lﬁ = _E Z Yuw X IOg(Sw) + (1 - yw) X 1Og(1 - Sw)v (3)
w=1
where [ is the number of samples in a specific batch, and y,, is the ground truth
label associated with the w'? sample.

Longitudinal model - £(-), is an alternative approach to the spectral model,
providing the prediction probability of MI diagnosis from the deep feature rep-
resentation of a sample t,,. However, different from the spectral model, S(-);
L(+) utilises the temporal dependency existing among subsequent windows gen-
erated from a patient, i.e., t1,to, - ,ty, -+ ,tw. To do so, a recurrent neural
network (RNN), particularly a long-short term memory (LSTM), is employed to
encode the temporal information. LSTM utilises multiple gates (input, forget,
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and output) to control the information stored in the cell memory to mitigate
the vanishing gradient problem embedded in vanilla RNN networks. The deep
feature representations of consecutive samples are fed into the LSTM, which can
control information flow using the gates it contains. Namely, the cell state gate
¢y, controls the flow from the current input and the previous and current hidden
state (denoted by t,,, h,,—1 and h,, respectively). Additionally, the contribution
of the previous state information, c,,—1 is controlled by the forget gate f,,. The
input gate, i,, naturally controls the new candidate cell state, c,,. Finally, the
output gate o,,, evaluates c,, in order to predict the current hidden state, h,, as

hw :Ow®¢(fw®cw—l +iw ®éw)7 (4)

where ® is an element-wise multiplication and ¢ is a tanh activation function.
h,, iy, Cw, Cyw—1, €y and o, € R7. To obtain the MI diagnosis prediction, a
sigmoid-based wrapper is applied on the hidden layer output of the LSTM, h,,,
similarly to Equation (2), upon which a cross-entropy loss in Equation (3) is
applied to train the model.

Spectral-longitudinal model - ¥(-), comprises both the spectral and lon-
gitudinal models discussed above in cascading fashion. Note that separate use
of spectral and longitudinal models each poses distinct challenges for effective
modelling, i.e., the former model is unable to account for the obvious temporal
dependencies that would be present among consecutive samples; on the other
hand, though the longitudinal model is capable of encoding such temporal in-
formation, training of the LSTM model is often associated with computational
challenges and introduction of performance bias as a result of taking the high-
dimensional t,, as its input. Hence, to circumvent these individual limitations,
we propose the joint spectra-longitudinal model, ¥(-), which addresses the above
challenges by jointly utilising the advantages provided by these two separate
model paradigms.

Given a subsequent of deep feature vectors as t,, € R®, ¥(-) first employs a
dense layer as in Equation (1) resulting l,, € R7. Then an LSTM network is
employed to encode the temporal dependency similarly to Equation (4). Note
the input to the LSTM is output of the dense layer, 1,,, not t,,. The hidden layer
prediction of the LSTM is then wrapped to provide the MI diagnosis prediction
vector s, using the sigmoid-based wrapped in Equation (2). The cross-entropy
loss function as in Equation (3) is used to jointly train the spectral and longitu-
dinal components of ¥(-) model.

3 Experiments

The proposed discriminant knowledge extraction for MI detection using deep
learning is validated in both private and public datasets. This section presents
the details of these datasets followed by the set up of parameters used in the
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spectral and longitudinal models. Finally, the result of the proposed method is
presented across the two datasets and modelling techniques.

3.1 Datasets

We used two datasets, GCI (proprietary) and PTB (public), to validate the pro-
posed spectral-longitudinal model. The GCI dataset contains 10-second 12-lead
ECG waveforms from 11,853 MI and 5,528 Normal (a total of 17,381) records
with a sampling rate of 500 Hz, collected from the Provincial Key Laboratory of
Coronary Heart Disease, Guangdong Cardiovascular Institute (GCI). Similarly,
the PTB Diagnostic ECG database contains collected 12-lead ECGs from pa-
tients diagnosed with multiple heart diseases, sampled at 1000 Hz [11,7]. Here
we consider cases which relate to MI (148 subjects) and health (52 subjects) with
a total of 200 subjects. As the duration of ECG data may vary across subjects,
we used only the first 10-second segment of each patient.

3.2 Setup

In the pre-processing step, a moving window with duration of 1 s with a 50%
overlap is applied to each ECG lead, resulting a total of 19 samples extracted
from a 10 s ECG lead signal. In the spectrogram generation step, a short time
Fourier transform (STFT) is applied with a chunk duration of 0.1 s with 90%
overlap in order to obtain smooth frequency-time representation. In the trans-
fer learning step of exploiting existing computer vision networks, we use the
GoogLeNet [19] to encode features from the stacked spectrograms. Particularly,
the penultimate hidden layer of GoogLeNet (Inception - v3) framework is used
that provides a feature of dimension x = 2,048. The dense layer in the spectral
model is designed with 16 neurons. Similarly, the longitudinal model is designed
to be simple with a single-layered LSTM network of 8 neurons at the input,
output, and forget gates. The temporal duration of the LSTM is set to 19 sam-
ples equiavalent to the number of windows generated from a 10 s patient signal.
During the training of the joint spectral and longitudinal model, we employ a
learning rate of 0.001 with a batch size of 76, which contains two patients per
class in each iteration. A five-fold stratified cross-validation is applied to each
dataset to partition the data into train and test sets. Area under the receiver
operating curve (AUROC), Sensitivity and Specificity are employed as evalua-
tion metrics to compare the performance of MI detection averaged across the
five-folds. Moreover, confusion matrices are also presented, when necessary, to
assess the misclassification error of MI cases.

3.3 Results and Discussion

The area under receiver operating characteristic curve (AUROC) values obtained
for the detection of MI in the two validation datasets (GCI and PTB) are shown
in Table 1. The spectral, S(+), and longitudinal, £(-), models as baseline methods
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Fig. 4: Confusion matrices of spectral, longitudinal and the proposed spectral-
longitudinal models. Top row: GCI results; bottom row: PTB results. Higher MI
detection performance in the PTB deataset is partially due to the simplicity of
the dataset.

are compared with the joint spectral-longitudinal, ¢(-), model. As expected, the
baseline methods have inferior performance when compared to the joint spectral-
longitudinal model proposed in this work, where the 1 (-) achieves the highest
AUROC values of 85% and 94% on the GCI and PTB datasets, respectively.
The higher classification performance on the PTB dataset can be attributed to
the simplicity of MI cases in this dataset, whereas there is a higher degree of
patient variation in the GCI dataset. Furthermore, GCI MI cases are different
in their onset time, i.e., acute, recent and old, which increases the variation in
patient samples even further.

The longitudinal model, £(+), alone can not achieve significant improvement
over the spectral model, i.e., 80% vs. 81% in the GCI dataset and 88% vs. 90%
in the PTB dataset. This can likely be attributed to the longitudinal model over-
fitting when taking the high dimensional (R?%48) inception feature vector (t,),
extracted from GoogleNet, as input. Further evidence of this is provided by the
confusion matrices shown in Fig. 4, which can be used to analyse in more de-
tail the misclassification rates of MI cases in the two datasets. The longitudinal
models achieve the highest detection sensitivity of the MI cases (75% in GCI and
83% in PTB). However, this performance comes at the cost of lowest precision
(84% in GCI and 96% in PTB) and specificity particularly in the GCI dataset
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Table 1: Precision, Sensitivity, Specificity and Area under receiver operating
characteristics, AUROC (%), results of the proposed framework for MI detection
validated on the private GCI and public PTB datasets.

GCI Dataset

Methods Precision Sensitivity Specificity| AUROC
Spectral 87% 67% 78% 81%
Longitudinal 84% 75% 69% 80%
Spectral-longitudinal| 90% 68% 83% 85%

PTB Dataset

Methods Precision Sensitivity Specificity| AUROC
Spectral 99% 60% 89% 88%
Longitudinal 96% 83% 85% 90%
Spectral-longitudinal| 98% 66% 95% 94%

(69% Specificity). By contrast, the joint spectral-longitudinal model achieves the
highest AUROC with an effective trade-off between sensitivity and specificity, by
using the dense layer outputs of the spectral models to reduce the high feature
dimension of the inception features from 2048-D to 8-D. This approach reduces
the overfitting issue which hinders the longitudinal models, and consequently the
highest specificity values are achieved using spectral-longitudinal models (83%
in GCI and 95% in PTB). As a result, spectral-longitudinal models are able to
achieve the lowest misclassification rate of healthy cases to MI, with only 17%
in GCI - compared to the 22% and 31% when using spectral and longitudinal
models, respectively. Similarly, only a 5% misclassification rate of healthy cases
to MI occurs in PTB using longitudinal model compared to 11% using spectral
and 15% using longitudinal models. Similar pattern of reducing the misclassi-
fications of MI cases to Healthy cases occurs, particularly for PTB dataset as
the spectral-longitudinal model reduced the MI misclassification by 6% in PTB
compared to the Spectral model. The misclassification rate of MI cases was not
reduced significantly in GCI datasets compared to the PTB dataset, due to the
higher imbalance and variation of these cases in the former.

4 Conclusions

Heart diseases (HDs), and myocardial infarction (MI) in particular, continue to
be responsible for millions of deaths worldwide. Clinically, inspection of electro-
cardiograms (ECGs) by the cardiologists has become acceptable and common
practice to provide screening of MI. However, the inter-subject variability asso-
ciated with ECG interpretation poses a challenge, in addition to the cumber-
someness of the inspection for many patients and longer ECG recordings. These
problems are most pronounced in low-resourced environments, in which there are
an insufficient number of trained clinical professionals. In this context, machine
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learning algorithms can be employed to assist in the diagnosis process, by provid-
ing a data-driven decision support tool to healthcare professionals. While most
existing methods that automate HD diagnosis utilise domain specific features,
e.g. morphological changes in ECGs, they often do not generalise well across
variation in patient characteristics and device specifications. In this paper, we
propose an end-to-end deep learning system to detect MI cases from healthy pa-
tients using a transfer learning approach and early fusion of multiple leads. The
former allows the need for large amounts of training data to be avoided, whilst
the latter enables the information across all 12 leads to effectively be exploited
through joint-feature encoding. The proposed framework was validated on both
private (> 15,000 patients) and public datasets and encouraging performance is
achieved. Generally, the spectral-longitudinal model that encodes deep spectral
representations as well as the temporal dependency in ECG signals, achieved the
highest performance over the baseline spectral or longitudinal models on both
datasets. Future work includes the exploration of more efficient integration of
multiple-leads, as well as identifying the time onset of a heart attack.
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