Skip to main content

Mobile Edge Computing for Content Distribution and Mobility Support in Smart Cities

  • Chapter
  • First Online:

Abstract

The pervasiveness of mobile devices is a common phenomenon nowadays, and with the emergence of the Internet of Things (IoT), an increasing number of connected devices are being deployed. In Smart Cities, data collection, processing, and distribution play critical roles in everyday quality of life and city planning and development. The use of Cloud computing to support massive amounts of data generated and consumed in Smart Cities has some limitations, such as increased latency and substantial network traffic, hampering support for a variety of applications that need low response times. In this chapter, we introduce and discuss aspects of distributed multi-tiered Mobile Edge Computing (MEC) architectures, which offer data storage and processing capabilities closer to data sources and data consumers, taking into account how mobility impacts the management of such infrastructure. The main goal is to address topics on how such infrastructure can be used to support content distribution from and to mobile users, how to optimize the resource allocation in such infrastructure, as well as how an intelligent layer can be added to the MEC/Fog infrastructure. Furthermore, a multifaceted literature review is given, as well as the open issues and challenging aspects of resource and application management will also be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.interscity.org.

References

  1. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for iot: Review, enabling technologies, and research opportunities. Future Generation Computer Systems 87, 278–289 (2018)

    Article  Google Scholar 

  2. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: A survey. IEEE Internet of Things Journal 5(1), 450–465 (2017)

    Article  Google Scholar 

  3. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Communications Surveys Tutorials 20(3), 2429–2453 (thirdquarter 2018). https://doi.org/10.1109/COMST.2018.2815638

  4. Araújo, M.C., Curado, M., Sousa, B.M., Bittencourt, L.F.: Cmfog: Proactive content migration using Markov chain and madm in fog computing. In: Proceedings of the 13th IEEE/ACM International Conference on Utility and Cloud Computing (2020)

    Google Scholar 

  5. Benkacem, I., Taleb, T., Bagaa, M., Flinck, H.: Optimal vnfs placement in cdn slicing over multi-cloud environment. IEEE Journal on Selected Areas in Communications 36(3), 616–627 (March 2018). https://doi.org/10.1109/JSAC.2018.2815441

    Article  Google Scholar 

  6. Bittencourt, L., Diaz-Montes, J., Buyya, R., Rana, O., Parashar, M.: Mobility-aware application scheduling in fog computing. IEEE Cloud Computing 4(2), 26–35 (March 2017). https://doi.org/10.1109/MCC.2017.27

    Article  Google Scholar 

  7. Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira, E., Curado, M., Villas, L., DaSilva, L., Lee, C., Rana, O.: The internet of things, fog and cloud continuum: Integration and challenges. Internet of Things 3–4, 134 – 155 (2018)

    Article  Google Scholar 

  8. Bonawitz, K.A., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C.M., Konečný, J., Mazzocchi, S., McMahan, B., Overveldt, T.V., Petrou, D., Ramage, D., Roselander, J.: Towards federated learning at scale: System design. In: SysML 2019 (2019), https://arxiv.org/abs/1902.01046, to appear

  9. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE transactions on information theory 52(6), 2508–2530 (2006)

    Article  MathSciNet  Google Scholar 

  10. Caldas, S., Konečný, J., McMahan, B., Talwalkar, A.: Expanding the reach of federated learning by reducing client resource requirements (2018), https://arxiv.org/abs/1812.07210

  11. Carrega, A., Repetto, M., Gouvas, P., Zafeiropoulos, A.: A middleware for mobile edge computing. IEEE Cloud Computing 4(4), 26–37 (2017)

    Article  Google Scholar 

  12. Chen, Q., Zheng, Z., Hu, C., Wang, D., Liu, F.: Data-driven task allocation for multi-task transfer learning on the edge. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). pp. 1040–1050. IEEE (2019)

    Google Scholar 

  13. Chettri, L., Bera, R.: A comprehensive survey on internet of things (iot) toward 5g wireless systems. IEEE Internet of Things Journal 7(1), 16–32 (2020)

    Article  Google Scholar 

  14. Chiang, M., Shi, W.: Nsf workshop report on grand challenges in edge computing. In: Tech. Rep. (2016)

    Google Scholar 

  15. Cisco: Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020. Tech. Rep. 1 (2016)

    Google Scholar 

  16. Curado, M., Madeira, H., da Cunha, P.R., Cabral, B., Abreu, D.P., Barata, J., Roque, L., Immich, R.: Internet of Things - Next Generation Cyber-Physical Systems, pp. 381–401. Springer (2019)

    Google Scholar 

  17. Cuttone, A., Lehmann, S., González, M.C.: Understanding predictability and exploration in human mobility. EPJ Data Science 7(1), 2 (2018)

    Article  Google Scholar 

  18. ETSI, M.: Mobile edge computing (mec); framework and reference architecture. ETSI, DGS MEC 3 (2016)

    Google Scholar 

  19. Gonçalves, D., Velasquez, K., Curado, M., Bittencourt, L., Madeira, E.: Proactive virtual machine migration in fog environments. In: 2018 IEEE Symposium on Computers and Communications (ISCC). pp. 00742–00745. IEEE (2018)

    Google Scholar 

  20. Gonçalves, D., Puliafito, C., Mingozzi, E., Rana, O., Bittencourt, L., Madeira, E.: Dynamic network slicing in fog computing for mobile users in mobfogsim. In: Proceedings of the 13th IEEE/ACM International Conference on Utility and Cloud Computing (2020)

    Google Scholar 

  21. Habibi, P., Farhoudi, M., Kazemian, S., Khorsandi, S., Leon-Garcia, A.: Fog computing: A comprehensive architectural survey. IEEE Access (2020)

    Google Scholar 

  22. Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G.R., Gibbons, P.B., Mutlu, O.: Gaia: Geo-distributed machine learning approaching {LAN} speeds. In: 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17). pp. 629–647 (2017)

    Google Scholar 

  23. Immich, R., Cerqueira, E., Curado, M.: Adaptive qoe-driven video transmission over vehicular ad-hoc networks. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). pp. 227–232 (April 2015). https://doi.org/10.1109/INFCOMW.2015.7179389

  24. Immich, R., Cerqueira, E., Curado, M.: Towards a qoe-driven mechanism for improved h.265 video delivery. In: Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). pp. 1–8 (June 2016). https://doi.org/10.1109/MedHocNet.2016.7528427

  25. Immich, R., Villas, L., Bittencourt, L., Madeira, E.: Multi-tier edge-to-cloud architecture for adaptive video delivery. In: 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud). pp. 23–30 (Aug 2019). https://doi.org/10.1109/FiCloud.2019.00012

  26. Immich, R., Borges, P., Cerqueira, E., Curado, M.: Adaptive motion-aware fec-based mechanism to ensure video transmission. In: IEEE Symposium on Computers and Communication (ISCC). pp. 1–6 (June 2014). https://doi.org/10.1109/ISCC.2014.6912571

  27. Jarray, C., Giovanidis, A.: The effects of mobility on the hit performance of cached d2d networks. In: 2016 14th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt). pp. 1–8. IEEE (2016)

    Google Scholar 

  28. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations, pp. 85–103. Springer (1972)

    Google Scholar 

  29. Kekki, S., Featherstone, W., Fang, Y., Kuure, P., Li, A., Ranjan, A., Purkayastha, D., Jiangping, F., Frydman, D., Verin, G., et al.: Mec in 5g networks. ETSI white paper 28, 1–28 (2018)

    Google Scholar 

  30. Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Knapsack problems, pp. 235–283. Springer (2004)

    Google Scholar 

  31. Kikuchi, J., Wu, C., Ji, Y., Murase, T.: Mobile edge computing based vm migration for qos improvement. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). pp. 1–5. IEEE (2017)

    Google Scholar 

  32. Ksentini, A., Taleb, T., Chen, M.: A Markov decision process-based service migration procedure for follow me cloud. In: 2014 IEEE International Conference on Communications (ICC). pp. 1350–1354. IEEE (2014)

    Google Scholar 

  33. Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D., Miao, C.: Federated learning in mobile edge networks: A comprehensive survey. arXiv preprint arXiv:1909.11875 (2019)

    Google Scholar 

  34. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression: Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017)

    Google Scholar 

  35. Liu, L., Guo, J., Zhang, S., Zhu, J.: Similar user assisted mobility prediction. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). pp. 1–6. IEEE (2019)

    Google Scholar 

  36. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  37. Mao, Y., Yi, S., Li, Q., Feng, J., Xu, F., Zhong, S.: A privacy-preserving deep learning approach for face recognition with edge computing. In: Proc. USENIX Workshop Hot Topics Edge Comput.(HotEdge). pp. 1–6 (2018)

    Google Scholar 

  38. Mckinsey, Company: Mapping the value beyond the hype. Executive Summary pp. 1 – 144 (2015)

    Google Scholar 

  39. Nadembega, A., Hafid, A.S., Brisebois, R.: Mobility prediction model-based service migration procedure for follow me cloud to support qos and qoe. In: 2016 IEEE International Conference on Communications (ICC). pp. 1–6. IEEE (2016)

    Google Scholar 

  40. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge. Proceedings of the IEEE 107(11), 2204–2239 (2019)

    Article  Google Scholar 

  41. Petrangeli, S., Wauters, T., Turck, F.D.: Qoe-centric network-assisted delivery of adaptive video streaming services. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). pp. 683–688 (April 2019)

    Google Scholar 

  42. Pisani, F., de Oliveira, F., Gama, E.S., Immich, R., Bittencourt, L.F., Borin, E.: Fog computing on constrained devices: Paving the way for the future iot. Advances in Edge Computing: Massive Parallel Processing and Applications 35, 22 (2020). https://doi.org/10.3233/APC200003

    Google Scholar 

  43. Puliafito, C., Mingozzi, E., Anastasi, G.: Fog computing for the internet of mobile things: Issues and challenges. In: 2017 IEEE International Conference on Smart Computing (SMARTCOMP). pp. 1–6 (2017)

    Google Scholar 

  44. Puliafito, C., Gonçalves, D.M., Lopes, M.M., Martins, L.L., Madeira, E., Mingozzi, E., Rana, O., Bittencourt, L.F.: Mobfogsim: Simulation of mobility and migration for fog computing. Simulation Modelling Practice and Theory 101, 102062 (2020)

    Article  Google Scholar 

  45. Ravi, S.: Custom on-device ml models with learn2compress (05 2018), https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html

  46. Retal, S., Bagaa, M., Taleb, T., Flinck, H.: Content delivery network slicing: Qoe and cost awareness. In: 2017 IEEE International Conference on Communications (ICC). pp. 1–6 (May 2017)

    Google Scholar 

  47. S. Gama, E., Immich, R., F. Bittencourt, L.: Towards a multi-tier fog/cloud architecture for video streaming. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). pp. 13–14 (2018)

    Google Scholar 

  48. Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F.: Mobile-edge computing architecture: The role of mec in the internet of things. IEEE Consumer Electronics Magazine 5(4), 84–91 (2016)

    Article  Google Scholar 

  49. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems 39(1), 43–62 (1997)

    Article  Google Scholar 

  50. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: A survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Communications Surveys Tutorials 19(3), 1657–1681 (thirdquarter 2017). https://doi.org/10.1109/COMST.2017.2705720

  51. Taleb, T., Ksentini, A.: Follow me cloud: interworking federated clouds and distributed mobile networks. IEEE Network 27(5), 12–19 (2013)

    Article  Google Scholar 

  52. Tinini, R.I., Batista, D.M., Figueiredo, G.B.: Energy-efficient vpon formation and wavelength dimensioning in cloud-fog ran over twdm-pon. In: 2018 IEEE Symposium on Computers and Communications (ISCC). pp. 521–526. IEEE (2018)

    Google Scholar 

  53. Tinini, R.I., Batista, D.M., Figueiredo, G.B., Tornatore, M., Mukherjee, B.: Low-latency and energy-efficient bbu placement and vpon formation in virtualized cloud-fog ran. IEEE/OSA Journal of Optical Communications and Networking 11(4), B37–B48 (2019)

    Article  Google Scholar 

  54. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5g networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine 55(4), 54–61 (2017)

    Article  Google Scholar 

  55. Valerio, L., Conti, M., Passarella, A.: Energy efficient distributed analytics at the edge of the network for iot environments. Pervasive and Mobile Computing 51, 27–42 (2018)

    Article  Google Scholar 

  56. Valerio, L., Passarella, A., Conti, M.: A communication efficient distributed learning framework for smart environments. Pervasive and Mobile Computing 41, 46–68 (2017)

    Article  Google Scholar 

  57. Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., Yu, P.S.: Not just privacy: Improving performance of private deep learning in mobile cloud. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2407–2416 (2018)

    Google Scholar 

  58. Wang, M., Yang, S., Sun, Y., Gao, J.: Human mobility prediction from region functions with taxi trajectories. PloS one 12(11), e0188735 (2017)

    Article  Google Scholar 

  59. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  60. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials (2020)

    Google Scholar 

  61. Yan, X.Y., Wang, W.X., Gao, Z.Y., Lai, Y.C.: Universal model of individual and population mobility on diverse spatial scales. Nature communications 8(1), 1639 (2017)

    Article  Google Scholar 

  62. Yang, S., Tseng, Y., Huang, C., Lin, W.: Multi-access edge computing enhanced video streaming: Proof-of-concept implementation and prediction/qoe models. IEEE Transactions on Vehicular Technology 68(2), 1888–1902 (2019)

    Article  Google Scholar 

  63. Zaidi, Z., Friderikos, V., Yousaf, Z., Fletcher, S., Dohler, M., Aghvami, H.: Will SDN Be Part of 5G? IEEE Communications Surveys Tutorials 20(4), 3220–3258 (Fourthquarter 2018). 10.1109/COMST.2018.2836315

    Google Scholar 

  64. Zhang, C., Zheng, Z.: Task migration for mobile edge computing using deep reinforcement learning. Future Generation Computer Systems 96, 111–118 (2019)

    Article  Google Scholar 

  65. Zhang, J., Letaief, K.B.: Mobile edge intelligence and computing for the internet of vehicles. Proceedings of the IEEE (2019)

    Google Scholar 

  66. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz F. Bittencourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

do Prado, P.F. et al. (2021). Mobile Edge Computing for Content Distribution and Mobility Support in Smart Cities. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics