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Abstract. Chronic Kidney Disease (CKD) is currently a worldwide chronic disease with an increasing 

incidence, prevalence and high cost to health systems. A delayed recognition and prevention often lead to a 

premature mortality due to progressive and incurable loss of kidney function. Data mining classifiers em- 

ployment to discover patterns in CKD indicators would contribute to an early diagnosis that allow patients to 

prevent such kidney severe damage. Adopting the cross Industry Standard Process of Data Mining (CRISP-

DM) methodology, this work develops a classifier model that would support healthcare professionals in early 

diagnosis of CKD patients. By building a data pipeline that manages the different phases of CRISP-DM, an 

automated data transformation, modelling and evaluation is applied to the CKD dataset extracted from the 

UCI ML repository. Moreover, the pipeline along with the Scikit-learn package’s GridSearchCV is used to 

carry out an exhaustive search of the best data mining classifier and the different parameters of the data 

preparation’s substages like data missing and feature selection. Thus, AdaBoost is selected as the best 

classifier and it outperforms with a 100% in terms of accuracy, precision, sensivity, specificity, f1-score and 

roc auc, the classification results obtained by the related works reviewed. Moreover, the application of 

feature selection reduces up to 12 out of 24 features which are employed in the classifier model developed. 
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1 Introduction 

 

Chronic kidney disease (CKD) is a worldwide public health problem with an increasing incidence, prevalence, 

and high cost to health systems. Globally, in 2017, 1.2 million people died from CKD, increasing the all-age 

mortality rate up to 41.5% since 1990. The same year, a number of 697.5 million cases of all-stage CKD 

were recorded that implies a global prevalence of 9,1% [1]. CKD is the most common type of kidney dis- 

eases that lead a vast majority of CKD patients to suffer premature mortality due to cardiovascular disease 

and the progressive loss of kidney function; as well as other types of kidney-injured syndromes with 

significant negative effects on their quality of life and survival rate [2]. 

 

Typically, CKD presents no symptoms in an early stage, but later, symptoms may appear like leg swelling, 

extreme fatigue and generalized weakness, shortness of breath, loss of appetite, or confusion. Slowing the 

progression of the kidney damage, usually by controlling the underlying causes, is the main focus of CKD 

treatment. A delayed recognition and prevention often lead to further kidney injury and health problems 

where hemodialysis or even kidney transplantation are the only way to keep the patient alive [3], [4].  
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However, the diagnosis of CKD is a process of 3 months where the level Glomerular Filtration Rate (GFR) is 

assessed, although is not practical for daily clinical use due to complexity of the measure procedure [5], [6]. 

Therefore, other estimation approaches of GFR, like Cockcroft-Gault equation or Modification of Diet in 

Renal Disease equation [7], are widely accepted by using filtration markers or risk factors which are easily 

collected like hypertension, obesity, heart disease, age, diabetes, drug abuse, family history of kidney disease, 

race/ethnicity [8]. By having the disease diagnosed at the beginning phase the corresponding treatments can 

be initiated and the patient can live longer even with these insufficient kidney functions. 

 

However, an opaque relationship between CKD and various symptoms exists, thus, data mining is 

appropriate to discover the latent correlation between them contributing significantly to assess individuals with 

potential CKD risk. Data mining provides useful tools for multivariate data analysis, namely classification and 

regression, allowing predictions based on the established models and hence offering a suitable advantage for 

risk assessment of many diseases including CKD [9]. Therefore, as early detection and proper treatments are 

the cornerstone to prevent CKD, automated and accurate diagnosis methods of CKD based on data mining 

are necessary to assist medical personnel to early discover patients at risk and so increase their quality of life 

expectation. 

 

Large amounts of complex data are being generated by healthcare stakeholders about patients, diseases, 

hospitals, medical equipment, claims, treatment cost, etc. that requires processing and analysis for 

knowledge extraction [10]. Machine learning and data mining had been successfully applied, over the past 

few decades, to build computer-aided diagnosis (CAD) systems for diagnosing complex health issues with 

good accuracy and efficiency by recognizing potentially useful, original, and comprehensible patterns in health 

data [11], [12]. Data Mining is particularly useful in medicine when no availability of evidence favoring a 

certain treatment option is found. Classification is a data mining technique, which belongs to supervised 

learning methods, with the primary objective of forecasting target classes precisely and accurately for a given 

case. 

 

This paper aims at enhancing the quality of CKD early diagnosis by developing an automated and accurate 

classifier model of CKD patients based on data preprocessing and feature selection techniques, as well as an 

exhaustive search of the best data mining classifier. The main contributions achieved are: a data management 

pipeline that provides an automated control of classification task and its previous data preparation; a 

classifier model that outperforms the related works reviewed not only in the training but also in testing 

phase with new unseen data; and a reduced group of features from the original dataset which are employed 

by the model to obtain high accurate results in classifying CKD patients. 

 

The next sections of the paper are organized as follows: Section II shows related works in the CKD diagnosis 

field, Section III discusses the methodology employed to build the classifier model, Section IV and V shows 

and discusses the results obtained respectively, and Section VI points the conclusions drawn in this research. 

 

2 Related Works 

 

Several data mining approaches have been considered for the detection of CKDs in the literature dealing with 

either medical images or clinical indicators. In these works, different classifiers have been mainly used such 

as Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees 

(DT), Näive Bayes (NB), Random Forest (RF), Ensemble Learning (Adaboost, Bagging,etc.), and 

Artificial Neural Networks (ANN). 

 

 

 



 
Despite good accurate results achieved in detecting CKD through data mining classifiers by Chiu et al. 

(94,75% accuracy) [13], Baby et al. (100% accuracy) [14], or Lakshim et al. (93.85% accuracy) [15]; a 

comparison cannot be carried out due to different datasets employed in the classification task. However, other 

different studies that employed, like this research, the CKD dataset from UCI repository [16] are described as 

following with the aim at comparing them to our results. 

 

Different classifiers as Radial Basis Function (RBF), LR and Multilayer perceptron (MLP) were assessed by 

Rubini et al. [17] being the MLP the best one with results as: 99.75% accuracy, 99.66% F1-score, 99.33% 

recall and 100% specificity. Ani et al. [18] built a clinical decision support system for CKD risk prediction 

comparing several clas- sifier and ranking its accuracy: BackProp neural network (81.5%), NB (78%), LDA 

(76%), KNN(90%), DT (93%), and Random subspace classification algorithms (94%). Other classifiers 

(KNN, SVM, LR, DT) were explored by Charleonnan et al. [19], being SVM the most accurate (98,3%) with a 

sensivity of 99% and specificity of 98%. Chen et al. [2] also demonstrated SVM had better accuracy (99.7%) 

over other methods as KNN or soft independent modeling of class analogy (SIMCA) in classifying CKD. In 

their research, Kunwar et al. [10] showed that NB outperforms ANN in accuracy (100% over 72.73%). 

Jeewantha et al. applied the percentage split method on the dataset, demonstrating most classifiers have better 

accuracy when percentage of training data is higher, with the MLP as the most accurate model (98.66%). The 

only study identified where cross-validation technique were not applied was performed by Imran et al. [11] 

obtaining a 99% of F1-score, precision, recall and area under the curve ROC (Roc Auc) with a model based on 

Feedforward neural networks over unseen samples of the test set. In addition, Van Eyck et al. [20] achieved 

in 2016 the best results so far with a 100% in terms of accuracy, precision, sensivity and specificity by using 

RF. 

 

On the other hand, other studies explored the influence of feature selection in the classifiers result. Thus, 

Chetty et al. [21] applied different classifiers along with wrapper feature selection methods demonstrating 

that the classifiers tested performed better on reduced dataset than the original with an accuracy of 100% by 

using best first search strategy in wrapper feature selection and KNN classifier. Salekin et al. [7] found RF 

had better accuracy (99%) than KNN and ANN when wrapper feature selection or Lasso with 12 or 10 

features respectively was applied. The combination of RF with feature selection as the most accurate 

(99.75%) was confirmed by Siyad et al.[22] among other as NB (97.5%), LR (98%) or DT(98%) . Feature 

selection was also tested by Basar et al. [23] on ensemble classifiers like AdaBoost, Bagging or Random Sub- 

spaces, being the latter the best one with 100% of accuracy by considering only 10 features of the original 

UCI dataset. Wibawa et al. [24] added another research to works on testing ensemble classifiers with feature 

selection, having an accuracy of 98,1% and 98% as F-score, prediction and recall in a resultant dataset of 17 

features with Ada- Boost-KNN classifiers. In the same line, Zubair et al. [25] obtained an accuracy of 99% by 

using AdaBoost classifier plus ExtraTree to select the 13 most important features. 

 

Table 1. Classification results (expressed in %) of related works. *: cross-validation 

technique not applied 
 

Article Accu- 

racy 

F1- 

Score 

Precision Specificity Recall Roc 

Auc 

Rubini [17] 100 100 - 100 99 - 

Basar [23] 100 - - - - - 

Van Eyck [20] 100 - 100 100 100 100 

Ani [18] 94 95 97 - 93 - 

Chen [2] 100 - - - 100 - 

Chetty [21] 100 - - - - - 

Kunwar [10] 100 - - - - - 

Jeewantha [8] 99 - - - - 100 



 
Salekin [7] - 99 - - - - 

Wibawa [24] 98 98 98 - 98 - 

Zubair [25] 99 99 - - - - 

Charleonnan [19] 98 - - 98 99 - 

Siyad [22] 100 - - - - - 

Imran [11](*) 99 97 - - 99 99 

 

As Table 1 shows, the results obtained by the different studies are almost perfect in terms of accuracy (values 

close to 100%). However, it must be noted that all papers reviewed, except one (Imran et al.[11]), performed 

the cross-validation technique to obtain their results. This technique allows using every sample of the dataset 

to train the model. Only Imran’s model was performed over unseen data samples. Therefore, the rest of 

models’ performance would be unknown in a deployment phase with data that have not been used for 

training. 

 

3 Material and methods 

 

For this study, the Cross-Industry Standard Process for Data Mining (CRISP-DM) has been adopted [26]. 

CRISP-DM gives a methodological way to manage data mining development. As shown in Fig. 1, CRISP-

DM establishes a continuous loop composed of 6 steps: Business Understanding, Data Understanding, Data 

Preparation, Modeling, Evaluation, Deployment. 

 

 

Fig. 1. CRISP-DM methodology [26]. 

 

With the aim at improving the automation and efficiency in building the classifier model as well as 

deploying it in a real-world scenario, developers usually combine the phases of data preparation, modelling 

and evaluation into a data management pipeline that controls the data flow through all algorithms applied. 

 
3.1 Business Understanding 

 

This stage is the most important because the intention of the project is outlined here. The main objective of 

this research work is to achieve a data mining model that guarantees a highly accurate and efficient 

classification of CKD patients. 

 

 

 



 
3.2 Data Understanding 

 

This step begins with an underlying data gathering and continues with actions to facilitate the understanding 

of what the project wants and needs in terms of data. 

 

As mentioned before, the CKD dataset used in this research was extracted from the UCI Machine Learning 

Repository [16]. The data set, collected from the Apollo Hospitals, Karaikudi, India during a nearly 2-month 

period in 2015, includes a total of 400 samples depicted by 11 numeric, 13 nominal attributes and a class 

attribute (ckd/notckd). Out of 400 samples, 250 samples belonged to the CKD group (62.5%), and the other 

150 samples to the non-CKD group implying an imbalanced dataset. Table 2 lists the attributes from the 

original data set. It must be noted every attribute contained missing values except the class attribute, due to 

possibly to the fault of the receiver input, sensor error or reluctance on data resource. The indicators 

considered in this dataset are feasible to collect [7] in clinical routine favoring an early diagnosis of CKD. 

 

Table 2. Attributes description of CKD dataset 
 

 Attributes [Acronym] Indication Average / nomi- 

nal values 

1 Age (year) [age] Numerical 51.5 (avg) 

2 Blood pressure (mm/Hg) [bp] Numerical 76.5 (avg) 

3 Specific gravity [sg] Nominal (1.005,1.010, 

1.015, 1.020, 1.025) 

7, 84, 75, 106, 81 

4 Albumin [al] Nominal (0,1,2,3,4,5) 199,44,43,43,24,1 

5 Sugar [su] Nominal (0,1,2,3,4,5) 290,13,18,14,13,3 

6 Red blood cells[rbc] Normal or abnormal 47 abnormal 

7 Pus cell [pc] Normal or abnormal 76 abnormal 

8 Pus cell clumps [pcc] Present or not present 42 present 

9 Bacteria [ba] Present or not present 22 present 

10 Blood glucose random (mgs/dl) [bgr] Numerical 148.04 (avg) 

11 Blood urea (mgs/dl) [bu] Numerical 57.43 (avg) 

12 Serum creatinine (mgs/dl) [sc] Numerical 3.07 (avg) 

13 Sodium (mEq/l) [sod] Numerical 137.53 (avg) 

14 Potassium (mEq/l) [pot] Numerical 4.63 (avg) 

15 Hemoglobin (gms) [hemo] Numerical 12.53 (avg) 

16 Packed cell volume [pcv] Numerical 38.88 (avg) 

17 White blood cell count (cells/cumm) [wc] Numerical 8406.12 (avg) 

18 Red blood cell count (cells/ cumm) [rc] Numerical 4.71 (avg) 

19 Hypertension [htn] Yes or no 147 yes 

20 Diabetes mellitus [dm] Yes or no 137 yes 

21 Coronary artery disease [cad] Yes or no 34 yes 

22 Appetite [appet] Good or poor 82 poor 

23 Pedal edema [pe] Yes or no 76 yes 

24 Anemia [ane] Yes or no 60 yes 

25 Target class ckd or notckd 250 ckd 

 

3.3 Data preparation 

 

Once the data has been collected, it must be transformed or preprocessed into a usable subset by checking for 

questionable, missing or ambiguous cases. 

 



 
Missing value imputation is one of the important tasks in data mining especially in the cases where the data is 

small and there is a need of using all available data, as occurs with CKD dataset [9]. For handling data missing 

values several approaches can be followed depending on the type of attribute or feature. Regarding numerical 

features, replacement can be done by Bayesian imputation with median or mean of the rest of feature’s 

values; or applying multivariate imputation through techniques as KNN or iterative correlation among all 

features. In case of nominal features, the most common approach is to substitute missing value for the most 

common value of the feature. 

 

Relatively many features can overload the classifier contributing negatively towards the calculation of the 

classification as well as increasing the computational time. Feature subset selection aims to reduce 

computing time and improve the results of prediction by removing the features/attributes in a dataset that are 

considered unimportant or unable to contribute to accuracy of the classification [17]. Features selection 

method also depends on the input feature category and the target class’ category, although there are methods 

that can be used for both like mutual information or recursive feature elimination (RFE). Apart from the two 

latter, this study will use ANOVA and Chi-Squared (Chi2) for numerical and nominal categories respectively. 

 

Another technique used in data preparation is feature scaling to allow the model to process the samples of 

numerical features with a normalized range of values by applying for instance minmax scaling (used here) or 

standard scaling. On the other hand, nominal features are usually encoded into numbers to allow the model to 

perform correctly. 

 

3.4 Modeling 

 

Once data is prepared for being processed, several data mining classifiers can be applied in order to discover 

underlying patterns and so to gain meaningful insights. This is the purpose of data mining: to create 

knowledge information that has meaning and utility. Depending on the data mining tasks, models used can be 

classifiers or regressors. As the goal of this research was to enhance early diagnosis of CKD patients through 

classification, the following classifiers employed were: Logistic Regression, Support Vec tor Machine, 

Decision Trees, Random Forest, Multilayer Perceptron, Naïve Bayes, K-Nearest Neighbors, and AdaBoost 

with Decision Tree as base classifier. These classifiers have been employed in related works described 

previously, and their usage will allow to compare the performance of the model developed in this research. 

 

3.5 Evaluation 

 

Classifier model selection must be done by dealing with a portion of the data and adjustments are made if 

necessary. Therefore, splitting the training set is recommended in this phase to divide in into a training 

subset, to decide which model performs better, and a validation subset, to tweak the hyperparameters of the 

selected model refining the classification accuracy. The k-fold cross-validation technique allows using each 

sample of the dataset for training k-1 times and testing 1 time [27]. Therefore, the variance of classification 

result can be minimized. However, the dataset should have been previously split to save a test set with the aim 

to run the model on unseen data, thus, ensuring new samples will be classified as expected in the next 

deployment phase. In this research, a test set is firstly generated, and the cross-validation technique is used on 

train ing set to select the model and the parameters of the data preparation phase 

 

To estimate classification performance, several metrics are used in this research, namely: accuracy, precision, 

recall/sensitivity, specificity, f1-score and roc-auc. Accuracy describes the rate of true predictions and it is 

suitable for balanced data among classes. However, because the data on CKD dataset is not balanced, the 

other metrics will be used to assess the model classifier. As following, the formulas of the measures used are 

shown considering the acronyms depicted in the confusion matrix. 



 
Table 3. Confusion matrix layout 

 

 Predicted class 

0 1 

Actual class 0 TN (True Negative) FP (False Positive) 

1 FN (False Negative) TP (True Positive) 

 
 

Table 4. Classification metrics formula 
 

Classification Metrics Formula 

Accuracy: the overall success rate of true prediction 
(TP+TN) 

(1)
 

(TP+TN+FP+FN) 

Sensitivity/Recall: fraction of positive instances predicted 

correctly 

TP 
(2) 

(TP +FN) 

Specificity: fraction of negative instances predicted correctly 
TN 

(3) 
(FP+TN) 

Precision: fraction of true positive data given all true pre- 

dicted data. 

TP 
(4) 

(TP+FP) 

F1-Score: harmonic mean from precision and recall 2 ∗ ( 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

) (5)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 

Roc-Auc: Area under curve ROC (Receiver Operating Characteristic). Values between 0 and 1 and 

higher values imply better classification performance. 

 

 

 

3.6 Deployment 

This stage is envisioned to put the selected model to perform on new data in a production environment in line 

with the project’s objectives. Concerning this research, in this phase the model selected would be performed 

in clinical routine. The new interactions at this phase might reveal the new variables and needs for the dataset 

and model. These new challenges could initiate revision of either business needs and actions, or the model and 

data, or both. 

 

3.7 Data mining software 

In this research, Python [28] has been used as language programming along with scikit- learn package [29] that 

allows to develop every stage of the CRISP-DM methodology. In particular, by using the scikit-learn’s 

module GridSearchCV, multiple combinations of classifiers, data missing imputation, scaling and feature 

selection techniques have been tested to find the best model to classify CKD. 
 

 

4 Results 

 

4.1 CKD Classifier experimental setup 

As mentioned before, developers are encouraged to build pipelines that manage the data operations tackled in the 

data preparation, modelling and evaluation phases of CRISP- DM methodology. 



 
 

Fig. 2. CKD classifier model’s pipeline 

 

Figure 2 shows the different steps of the data management pipeline developed in this research that allows to 

find the best model to classify CKD patients. As a previous step, the original dataset was split for training 

(70% i.e. 280 samples) and testing (30% i.e. 120 samples), maintaining the same proportion of ckd/non-ckd 

in both sets. Next, the first step of this two-branch pipeline entails the separation of numerical and nominal 

features. Regarding numeric features, data missing techniques are applied first and then continuing with 

selection of those relevant features and a further scaling applying mixmax normalization. Data missing is also 

tackled first in nominal features and before applying feature selection, these features are encoded into numbers 

to ensure a correct performance in further steps. In order to select the model which performs the best clas- 

sification of CKD patients, the classifier is trained and then validated by using 5-fold cross-validation. For 

that purpose, the scikit-learn’s module GridSearchCV was employed since it allows to find the best classifier 

applying cross-validation as well as trying a grid of parameters for every stage of the pipeline. Finally, 

samples from the test set were used with the best model found to evaluate its classification performance with 

unseen data. This last evaluation gives a real notion about the selected model’s performance with new data 

(i.e. data not used for training). 

 

GridSearchCV allows developers to find the best combination of a model’s parameters by applying an 

exhaustive search with multiple candidates generated from a predefined grid of parameters. Therefore, in this 

research the parameters needed to be optimized for the best resultant model corresponded to data missing 

techniques, feature selection strategy and its number of output features, as well as the type of data mining 

classifier employed. Table 5 shows the different values considered for these parameters. 



 
Table 5. GridSearch CV parameters employed 

 

GridSearchCV parameters Values 

Data missing strategy for nu- 

meric features 

Mean, median, KNN, iterative. 

Feature selection strategy ANOVA (only numeric features), Chi2 (only nominal fea- 

tures), mutual information, Recursive Feature Elimination 

(RFE). 

Number of output features 1 to 11 for numeric; 1 to 13 for nominal. 

Classifiers Logistic Regression, Support Vector Machine, Decision 

Trees, Random Forest, Multilayer Perceptron, Naïve 

Bayes, K-Nearest Neighbors, and AdaBoost with decision 

tree as base classifyier. 

 

4.2 CKD Classification and feature selection results 

According to GridSearchCV results, the best model’s parameters found were: median for data missing 

strategy; RFE and 4 output features for numeric features; RFE and 5 output features for nominal features; 

and AdaBoost classifier. The first 3 best combination found by GridSearchCV results are shown in Table 6. 

 

Table 6. Best 3 models found by GridSearchCV (all cells expressed in %) 
 

Best Model (classifier, 

data missing, numeric 

feature selection, nomi- 

nal feature selection) 

Accu- 

racy 

F1- 

Score 

Pre- 

cision 

Specifi- 

city 

Recall Roc 

Auc 

AdaBoost, median, 

RFE#4, RFE#5 

100 100 100 100 100 100 

AdaBoost, median, 

ANOVA#7; Chi2#7 

99.64 99.53 99.09 99.42 100 99.71 

AdaBoost, median, 

ANOVA#7, RFE#5 

99.64 99.51 100 100 99.04 99.52 

 

Moreover, Table 7 shows a comparison of the cross-validation results using the different classifiers but 

maintaining the best model’s parameters related to data missing and feature selection. 

 

Table 7. Comparison of best model parameters with all classifier considered (all cells 

expressed in %) 
 

Classifier 
Accu- 

racy. 

F1- 

Score 

Pre- 

cision 

Specifi- 

city 
Recall 

Roc 

Auc 

AdaBoost 100 100 100 100 100 100 

Random Forest 99.29 99.00 100 100 98.10 99.05 

Multilayer Perceptron 98.57 98.16 96.44 97.71 100 98.86 

Logistic Regression 98.21 97.70 95.53 97.14 100 98.57 

Decision Trees 98.21 97.67 97.50 98.29 98.10 98.19 

Support Vector 

Machine 
97.86 97.29 94.85 96.57 100 98.29 

K-Nearest Neighbors 97.86 97.29 94.85 96.57 100 98.29 

Naïve Bayes 95.71 94.61 89.78 93.14 100 96.57 

 



 
The final step of the pipeline proposed in this research entailed the evaluation of the best model achieved on 

the test set’s samples to see its performance with new unseen data. The 3 best models extracted in 

GridSearchCV results were evaluated in these con ditions and classification results are shown in Table 8: 

 

Table 8. 3 Best models found by GridSearchCV evaluated on test set (all cells expressed 

in %) 
 

Best Model Accu- 

racy 

F1- 

Score 

Pre- 

cision 

Specifi- 

city 

Recall Roc 

Auc 

AdaBoost, median, 

RFE#4, RFE#5 

98.33 98.34 98.40 98.33 98.83 98.67 

AdaBoost, median, 

ANOVA#7; Chi2#7 

99.17 99.17 99.18 99.17 99.17 99.33 

AdaBoost, median, 

ANOVA#7, RFE#5 

100 100 100 100 100 100 

 

The confusion matrix of these models by using the samples of test set (120 samples) are depicted in Table 9. 

 

Table 9. Confusion matrix of best selected models with samples of test set. 
 

 Predicted class 

ckd notckd 

AdaBoost, median, RFE#4, RFE#5 Actual 

class 

ckd 73 2 

notckd 0 45 

AdaBoost, median, ANOVA#7; 

Chi2#7 

Actual 

class 

ckd 74 1 

notckd 0 45 

AdaBoost, median, ANOVA#7, 

RFE#5 

Actual 

class 

ckd 75 0 

notckd 0 45 

 

In addition, the best models indicated that only 9,12 and 14 out of 24 features were considered as relevant to 

achieve such results. The features selected for the 3 best models are shown in Table 10. 

 

Table 10. Features selected in the 3 best models found by GridSearchCV 
 

Best Models Numeric features Nominal features 

AdaBoost, me- 

dian, RFE#4, 

RFE#5 

Serum creatinine, Potassium, He- 

moglobin, Red blood cell count. 

Specific gravity, Albumin, Hy- 

pertension, Diabetes mellitus, 

Pedal edema. 

AdaBoost, me- 

dian, ANOVA#7; 

Chi2#7 

Blood glucose random, Blood urea, 

Serum creatinine, Sodium, Hemo- 

globin, Packed cell volume, Red 

blood cell count. 

Specific gravity, Albumin, 

Sugar, Hypertension, Diabetes 

mellitus, Appetite, Pedal 

edema. 

AdaBoost, me- 

dian, ANOVA#7, 

RFE#5 

Blood glucose random, Blood urea, 

Serum creatinine, Sodium, Hemo- 

globin, Packed cell volume, Red 

blood cell count. 

Specific gravity, Albumin, Hy- 

pertension, Diabetes mellitus, 

Pedal edema. 

 

5 Discussion 

 

The pipeline developed in this research offers the possibility to automate not only the training and testing of 

the model but also the searching of best parameters involved in the data preparation phase as well as the data 



 
mining classifier employed. Furthermore, this pipeline would manage classification of new samples in case it 

appeared, as well as the consequent model retraining and adaptation to new incoming data. 

 

The classification results achieved by this research after applying cross-validation technique through 

GridSearchCV manifested that the classifier AdaBoost performed a better classification task compared to 

other classifiers considered. Moreover, such classifier along with the parameters selected by GridSearchCV 

(median, RFE#4, RFE#5) obtained results of 100% in terms of accuracy, precision, sensivity, specificity, f1-

score and Roc Auc. Compared to the results from other related works, this research reached the most 

accurate figures so far like research developed by Van Eyck et al [20]. 

 

However, the best model selected with cross-validation did not perform as the best with the new data 

belonging to the test set. Here, a clear example of overfitting existed since the best trained model was not the 

most accurate in classifying new unseen data. Consequently, other model that involved a bigger number of 

selected features (ANOVA#7, RFE#5) was evaluated and it classified better since the new information of 

features added allowed to achieve results of 100% in every classification metric considered. For the best of 

our knowledge, this research outperforms the rest of studies developed in CKD patients classification so far, 

because not only equalizing the best model obtained by using cross validation, but also achieving a perfect 

classification with unseen data which has not been found in any related work. The split of the dataset into a 

training/validation subset, on one side, and test subset on the other, with a ratio of 70/30 could negatively 

affect the model performance since a small group of samples were dedicated for training. However, the 

classification results demonstrated the decision made about developing the pipeline and using the cross-

validation strategy devel oped was correct. 

 

Moreover this study contributes to the state-of-art by proposing a reduced group among the entire dataset’s 

features with several implications: higher feasibility in classifying CKD patients since the number of features 

to be collected are lower; and a decreasing cost to healthcare systems as extracting less clinical indicators 

proposed by such features selected. 

 

Due to the fact that the classifier selected is AdaBoost with Decision Tree as base classifier, an exploration 

of features importance in the classification task could be carried out with the aim at giving healthcare 

professionals an easier understanding and interpretability of the outcomes generated by the model. By doing 

so, not only would clinicians achieve an early diagnosis with a reduced group of indicators but also, they 

could focus on treatment for those important features to the risk of suffering CKD or even revert the disease 

progress returning to an earlier CKD stage. 

 

6 Conclusion 

 

This article shows a development of a classifier model aimed at early diagnosis of Chronic Kidney Disease 

(CKD) patients. CKD is a worldwide chronic disease with an increasing incidence that leads patients to a 

premature mortality if it is detected in later stages. A review of the related works has been carried out by 

depicting the classification results achieved by different authors. The CRISP-DM methodology has been 

adopted in the classifier model development to ensure data is properly processed. Moreover, a data 

management pipeline has been developed for automating all stages of data preparation, modeling and 

evaluation. After applying cross-validation technique through scikit-learn package’s GridSearchCV, the best 

model comprises AdaBoost, as best classifier; and median, RFE#4, RFE#5 as best data preparation’s 

parameters. Next, this best model is also tested with new unseen data by using the test set that has been 

previously split from the original dataset before using the pipeline developed. Moreover, an exploration 

of the features selected during the data preparation phase are carried out to depict those dataset’s attributes 

that contribute to the model performance. A case of overfitting is identified since the best trained model 



 
performs worse than the other model with more features selected when dealing with unseen data in the 

testing phase. To the best of our knowledge, the classification results obtained either in cross-validation or in 

testing phase outperforms the existing results of the related works reviewed. 
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