Skip to main content

Design of a Morphing Surface Using Auxetic Lattice Skin for Space-Reconfigurable Reflectors

  • Conference paper
  • First Online:
Book cover Human Centered Computing (HCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12634))

Included in the following conference series:

  • 931 Accesses

Abstract

The effect of Poisson’s ratio to the reflector reshaping is investigated through mechanical study of reconfigurable reflectors in this paper. The value of Poisson’s ratio corresponding to the minimum deforming stress is given and an auxetic lattice is proposed for the reflector surface. The parameters of the auxetic lattice are investigated for vary Poisson’s ratio. A case of reconfigurable reflector is studied, the curvature change and strain are calculated by surface geometry analyse, and the negative Poisson’s ratio is established for vary thickness. According to RMS calculation by the FEM structure analyse, the thickness can finally be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E:

Young’s Modulus

ν :

Poisson’s ratio

σ :

Stress

σ B :

Bending stress

σ M :

Membrane stress

τ :

Shear stress

ε :

strain

γ:

Shear strain

x, y, z :

Crosswise, length wise direction, vertical direction

Kx, Ky, Kg:

Curvature in x, y dimension and Guassian curvature

ν Bmin :

Poisson’s ratio corresponding to minimal bending stress

ν Mmin :

Poisson’s ratio corresponding to minimal membrane stress

ν min :

Poisson’s ratio corresponding to minimal stress

References

  1. Clarricoats, P.J.B., Hai, Z., Brown, R.C., Poulton, G.T.: A reconfigurable mesh reflector antenna. In: Sixth International Conference on Antennas and Propagation (1989)

    Google Scholar 

  2. Clarricoats, P.J.B., Zhou, H.: Design and performance of a reconfigurable mesh reflector antenna. Part 1: antenna design. In: IEE Proceedings-H, vol. 13, no. 6 (1991)

    Google Scholar 

  3. Clarricoats, P.J.B., Brown, R.C., Crone, G.E., Hai, Z., Poulton, G.T., Willson, P.J.: The design and testing of reconfigurable reflector antennas. In: Proceedings 1989 ESA Workshop on Antenna Technologies (1989)

    Google Scholar 

  4. Brown, R.C., Clarricoats, P.J.B., Hai, Z.: The performance of a prototype reconfigurable mesh reflector for spacecraft antenna applications. In: Proceedings 19th European Microwave Conference (1989)

    Google Scholar 

  5. Pontoppidan, K., Boisset, J.P., Crone, G.A.E.: Reconfigurable reflector technology. In: IEE Colloquium on Satellite Antenna Technology in the 21st Century (1991)

    Google Scholar 

  6. Pontoppidan, K.: Light-weight reconformable reflector antenna dish. In: Proceedings of 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, Noordwijk, The Netherlands (2005)

    Google Scholar 

  7. Pontoppidan, K., Boisset, J.P., Ginestet, P., Crone, G.: Design and test of a reconfigurable reflector antenna. JINA, Nice (1992)

    Google Scholar 

  8. Rodrigues, G., Angevain, J.C., Santiago, J.: Shape control of reconfigurable antenna reflector: concepts and strategies. In: The 8th European Conference on Antennas and Propagation (2014)

    Google Scholar 

  9. Rodrigues, G., Angevain, J.-C., Santiago-Prowald, J.: Shape optimization of reconfigurable antenna reflectors. CEAS Space J. 5(3–4), 221–232 (2013). https://doi.org/10.1007/s12567-013-0038-5

    Article  Google Scholar 

  10. Sakamoto, H., et al.: Shape control experiment of space reconfigurable reflector using antenna reception power. In: 3rd AIAA Spacecraft Structures Conf. AIAA 2016-0703 (2016)

    Google Scholar 

  11. Tanaka, H., Natori, M.C.: Study on a reconfigurable antenna system consisting of cable networks. Trans. Japan Soc. Aeronaut. Space Sci. 50, 48–55 (2007)

    Article  Google Scholar 

  12. Susheel, C.K., Kumar, R., Chauhan, V.S.: An investigation into shape and vibration control of space antenna reflectors. Smart Mater. Struct. 25, 125018 (2016)

    Article  Google Scholar 

  13. Viskum, H., Pontopiddan, K., Clarricoats, P.J.B., Crone, G.A.E.: Coverage flexibility by means of a reconformable subreflector. In: Proceedings of the APS International Symposium, pp. 13–18. IEEE (1997)

    Google Scholar 

  14. Washington, G.N., Angelino, M., Yoon, H.T., Theunissen, W.H.: Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Trans. Antennas Propag. 50(5), 628–637 (2002)

    Article  Google Scholar 

  15. Cappellin, C., Pontoppidan, K.: Feasibility study and sensitivity analysis for a reconfigurable dual reflector antenna. In: Proceedings of the European CAP, Berlin (2009)

    Google Scholar 

  16. Datashvili, L.S., Baier, H., Wei, B.: Mechanical Investigations of in-space-Reconfigurable Reflecting Surfaces. https://www.researchgate.net/publication/228921635

  17. Datashvili, L.S., Baier, H., Wei, B., et al.: Design of a morphing skin using flexible fiber composites for space-reconfigurable reflectors. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference (2013)

    Google Scholar 

  18. Shubao, S., Siyang, S., Minglong, X., et al.: Mechanically reconfigurable reflector for future smart space antenna application. Smart Mater. Struct. 27, 095014 (2018)

    Article  Google Scholar 

  19. Kolken, H.M., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC. Adv. 7, 5111–5129 (2017)

    Google Scholar 

  20. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)

    Article  Google Scholar 

  21. Pozniak, A.A., Wojciechowski, K.W., Grima, J.N., et al.: Planar auxeticity from elliptic inclusions. Compos. Part B Eng. 94(6), 379–388 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houfei Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, B., Fang, H., He, Y., Jiang, S., Lan, L. (2021). Design of a Morphing Surface Using Auxetic Lattice Skin for Space-Reconfigurable Reflectors. In: Zu, Q., Tang, Y., Mladenović, V. (eds) Human Centered Computing. HCC 2020. Lecture Notes in Computer Science(), vol 12634. Springer, Cham. https://doi.org/10.1007/978-3-030-70626-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70626-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70625-8

  • Online ISBN: 978-3-030-70626-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics