Skip to main content

Multi-UAV Mission Efficiency: First Results in an Agent-Based Simulation

  • Conference paper
  • First Online:
Book cover Modelling and Simulation for Autonomous Systems (MESAS 2020)

Abstract

To assess the mission effectiveness and efficiency of future airborne systems-of-systems with autonomous components, appropriate performance models and metrics are required. In a first attempt, such metrics were derived systematically by subject-matter experts (SMEs) decomposing a specific mission and its tasks hierarchically, until measurable criteria were reached. Weights of the criteria were obtained through the Fuzzy Analytic Hierarchy Process (FAHP), using linguistic variables for the pairwise comparison of criteria on all decomposition levels.

This work demonstrates determination of such metrics in a multi-agent 2D simulation. The results are aggregated according to their respective weight, generating the mission run’s total evaluation.

An air-to-ground operation by multiple unmanned aerial vehicles (UAVs) with pop-up threats present was chosen as an example mission. Deploying different force packages, their UAV models having different characteristics, in the simulation yields distinct aggregated evaluation outcomes. These signify differences in efficiency and thus suitability for the selected mission.

For investigation of result robustness local sensitivity analysis is used. For validation it will be required to have the SMEs compare their assessments of the conducted missions to the generated results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grayson, T.: Mosaic Warfare, 27 July 2018. https://www.darpa.mil/attachments/STO-Mosaic-Distro-A.pdf. Accessed 6 August 2020

  2. Jaiswal, N.K.: Military Operations Research. Quantitative Decision Making. International Series in Operations Research & Management Science, vol. 5. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  3. Ernest, N.D.: Genetic fuzzy trees for intelligent control of unmanned combat aerial vehicles, University of Cincinnati (2015)

    Google Scholar 

  4. Stodola, P., Drozd, J., Mazal, J., Hodický, J., Procházka, D.: Cooperative unmanned aerial system reconnaissance in a complex urban environment and uneven terrain. Sensors (Basel, Switzerland) (2019). https://doi.org/10.3390/s19173754

  5. Hodicky, J., Prochazka, D.: Modelling and simulation paradigms to support autonomous system operationalization. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 361–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_29

    Chapter  Google Scholar 

  6. Morawietz, S., Strohal, M., Stütz, P.: A mission-based approach for the holistic evaluation of aerial platforms: implementation and proof of concept. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 2017, Denver, Colorado, USA, 5–9 June 2017: held at the AIAA Aviation Forum 2017. 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, Colorado. Curran Associates Inc., Red Hook (2017). https://doi.org/10.2514/6.2017-4152

  7. Morawietz, S., Strohal, M., Stütz, P.: A decision support system for the mission-based evaluation of aerial platforms: advancements and final validation results. In: 18th AIAA Aviation Technology, Integration, and Operations Conference 2018. Atlanta, Georgia, USA, 25–29 June 2018: held at the AIAA Aviation Forum 2018. 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia. Curran Associates Inc., Red Hook (2018). https://doi.org/10.2514/6.2018-3975

  8. Ruf, C., Zwick, M., Morawietz, S., Stütz, P.: Enhancing automated aerial reconnaissance onboard UAVs using sensor data processing-characteristics and pareto front optimization. In: AIAA Scitech 2019 Forum. AIAA Scitech 2019 Forum, San Diego, California. American Institute of Aeronautics and Astronautics, Reston, Virginia (2019). https://doi.org/10.2514/6.2019-1541

  9. Habayeb, A.R.: Systems Effectiveness. Elsevier Science, Burlington (1987)

    Book  Google Scholar 

  10. Seethaler, J., Strohal, M., Stütz, P.: Finding metrics for combat aircraft mission efficiency: an AHP-based approach. In: Deutscher Luft- und Raumfahrtkongress 2020 (in publication). Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Bonn (2020). https://doi.org/10.25967/530013

  11. vanGundy, A.B.: Brainwriting for new product ideas: an alternative to brainstorming. J. Consum. Market. 1, 67–74 (1983)

    Article  Google Scholar 

  12. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Modelling (1987). https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Mu, E., Pereyra-Rojas, M.: Practical Decision Making. An Introduction to the Analytic Hierarchy Process (AHP) Using Super Decisions v2. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33861-3

  14. Buscher, U., Wels, A., Franke, R.: Kritische Analyse der Eignung des Fuzzy-AHP zur Lieferantenauswahl. In: Bogaschewsky, R., Eßig, M., Lasch, R., Stölzle, W. (eds.) Supply Management Research. Aktuelle Forschungsergebnisse 2010; [Tagungsband des wissenschaftlichen Symposiums Supply Management; Advanced studies in supply management, Bd. 3], vol. 140, 1st edn., pp. 27–60. Gabler, Wiesbaden (2010). https://doi.org/10.1007/978-3-8349-8847-8_2

  15. Ossadnik, W., Schinke, S., Kaspar, R.H.: Group aggregation techniques for analytic hierarchy process and analytic network process: a comparative analysis. Group Decis. Negot. 25(2), 421–457 (2015). https://doi.org/10.1007/s10726-015-9448-4

    Article  Google Scholar 

  16. Forman, E., Peniwati, K.: Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. (1998). https://doi.org/10.1016/S0377-2217(97)00244-0

    Article  MATH  Google Scholar 

  17. Cho, Y.-G., Cho, K.-T.: A loss function approach to group preference aggregation in the AHP. Comput. Oper. Res. (2008). https://doi.org/10.1016/j.cor.2006.04.008

    Article  MATH  Google Scholar 

  18. Schriver, A.T., Morrow, D.G., Wickens, C.D., Talleur, D.A.: Expertise differences in attentional strategies related to pilot decision making. Hum. Factors (2008). https://doi.org/10.1518/001872008X374974

    Article  Google Scholar 

  19. Roth, R.T.: Quantifying Experience in the Value of Human Capital, ADA186585. US Air Force Academy, Colorado Springs (1987). https://apps.dtic.mil/sti/pdfs/ADA186585.pdf. Accessed 9 July 2020

  20. Kelly, M.J.: Performance measurement during simulated air-to-air combat. Hum. Factors 30(4), 495–506 (1988)

    Article  Google Scholar 

  21. Morawietz, S.: Konzipierung und Umsetzung eines Unterstützungssystems zur vergleichenden Bewertung von Luftfahrzeugen. Dissertation, Universität der Bundeswehr München (2018)

    Google Scholar 

  22. Geldermann, J., Lerche, N.: Leitfaden zur Anwendung von Methoden der multikriteriellen Entscheidungsunterstützung. Methode: PROMETHEE, Georg-August-Universität (2014). www.uni-goettingen.de/en/sh/57609.htmlde/document/download/285813337d59201d34806cfc48dae518.pdf/MCDA-Leitfaden-PROMETHEE.pdf. Accessed 24 Jan 2020

  23. Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making. Methods and Applications: A State the Art Survey. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9

  24. The Mathworks Inc.: MATLAB. Version 2019b, Natick, Massachusetts (2019)

    Google Scholar 

  25. Zhu, X., Liu, Z., Yang, J.: Model of collaborative UAV swarm toward coordination and control mechanisms study. Procedia Comput. Sci. (2015). https://doi.org/10.1016/j.procs.2015.05.274

    Article  Google Scholar 

  26. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction. Artificial Intelligence and Robotics Series 2018. Chapman & Hall/CRC (2017–2020)

    Google Scholar 

  27. Colledanchise, M., Faconti, D.: BehaviorTree.CPP (2014–2020). https://github.com/BehaviorTree/BehaviorTree.CPP. Accessed 2 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Seethaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seethaler, J., Strohal, M., Stütz, P. (2021). Multi-UAV Mission Efficiency: First Results in an Agent-Based Simulation. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2020. Lecture Notes in Computer Science(), vol 12619. Springer, Cham. https://doi.org/10.1007/978-3-030-70740-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70740-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70739-2

  • Online ISBN: 978-3-030-70740-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics