Skip to main content

A Polystore Based Database Operating System (DBOS)

  • Conference paper
  • First Online:
Book cover Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2020, Poly 2020)

Abstract

Current operating systems are complex systems that were designed before today’s computing environments. This makes it difficult for them to meet the scalability, heterogeneity, availability, and security challenges in current cloud and parallel computing environments. To address these problems, we propose a radically new OS design based on data-centric architecture: all operating system state should be represented uniformly as database tables, and operations on this state should be made via queries from otherwise stateless tasks. This design makes it easy to scale and evolve the OS without whole-system refactoring, inspect and debug system state, upgrade components without downtime, manage decisions using machine learning, and implement sophisticated security features. We discuss how a database OS (DBOS) can improve the programmability and performance of many of today’s most important applications and propose a plan for the development of a DBOS proof of concept.

DBOS committee members in alphabetical order. The DBOS Committee, dbos-project@googlegroups.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we will use Lambda as an exemplar of any resource allocation system that supports “pay only for what you use.”.

References

  1. Agrawal, S.R., et al.: A many-core architecture for in-memory data processing. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 2017, pp. 245–258. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3123939.3123985

  2. Ardelean, D., Diwan, A., Erdman, C.: Performance analysis of cloud applications. In: 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2018), pp. 405–417. USENIX Association, Renton (2018). https://www.usenix.org/conference/nsdi18/presentation/ardelean

  3. Arnold, J., Kaashoek, M.F.: Ksplice: Automatic rebootless kernel updates. In: Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys 2009, pp. 187–198. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1519065.1519085

  4. Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., Nieh, J.: POSIX abstractions in modern operating systems: the old, the new, and the missing. In: Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2901318.2901350

  5. Barroso, L., Marty, M., Patterson, D., Ranganathan, P.: Attack of the killer microseconds. Commun. ACM 60(4), 48–54 (2017). https://doi.org/10.1145/3015146

    Article  Google Scholar 

  6. Bauer, M.: Paranoid penguin: an introduction to Novell AppArmor. Linux J. 2006(148), 13 (2006)

    Google Scholar 

  7. Baumann, A., et al.: The multikernel: a new OS architecture for scalable multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp. 29–44. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1629575.1629579

  8. Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazières, D., Kozyrakis, C.: Dune: Safe user-level access to privileged CPU features. In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI 2012, pp. 335–348. USENIX Association, USA (2012)

    Google Scholar 

  9. Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., Bugnion, E.: IX: A protected dataplane operating system for high throughput and low latency. In: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2014), pp. 49–65. USENIX Association, Broomfield (2014). https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay

  10. Bhat, S.S., Eqbal, R., Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scaling a file system to many cores using an operation log. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP 2017, pp. 69–86. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132747.3132779

  11. Boyd-Wickizer, S., et al.: An analysis of linux scalability to many cores. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI 2010, pp. 1–16. USENIX Association, USA (2010)

    Google Scholar 

  12. Byun, C., et al.: Large scale parallelization using file-based communications. In: 2019 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7 (2019)

    Google Scholar 

  13. Byun, C., et al.: LLMapReduce: multi-level map-reduce for high performance data analysis. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–8 (2016)

    Google Scholar 

  14. Byun, C., et al.: Optimizing Xeon phi for interactive data analysis. In: 2019 IEEE High Performance Extreme Computing Conference (HPEC) (2019). https://doi.org/10.1109/hpec.2019.8916300

  15. Cailliau, P., Davis, T., Gadepally, V., Kepner, J., Lipman, R., Lovitz, J., Ouaknine, K.: RedisGraph graphBLAS enabled graph database. IEEE (2019). https://doi.org/10.1109/ipdpsw.2019.00054

  16. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production systems. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC 2004, p. 2. USENIX Association, USA (2004)

    Google Scholar 

  17. Carbune, V., Coppey, T., Daryin, A., Deselaers, T., Sarda, N., Yagnik, J.: SmartChoices: hybridizing programming and machine learning. In: Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 36th International Conference on Machine Learning (ICML) (2019). https://arxiv.org/abs/1810.00619

  18. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of serverless computing. Commun. ACM 62(12), 44–54 (2019)

    Article  Google Scholar 

  19. Chamberlin, D.D., et al.: A history and evaluation of system R. Commun. ACM 24(10), 632–646 (1981). https://doi.org/10.1145/358769.358784

  20. Chandra, R., Kim, T., Zeldovich, N.: Asynchronous intrusion recovery for interconnected web services, pp. 213–227 (2013). https://doi.org/10.1145/2517349.2522725

  21. Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.: Resource central: understanding and predicting workloads for improved resource management in large cloud platforms. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP 2017, pp. 153–167. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132747.3132772

  22. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013). https://doi.org/10.1145/2408776.2408794

    Article  Google Scholar 

  23. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous datacenters. In: Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2013, pp. 77–88. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2451116.2451125

  24. Feiner, P., Brown, A.D., Goel, A.: Comprehensive kernel instrumentation via dynamic binary translation. In: Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII, pp. 135–146. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2150976.2150992

  25. Fouladi, S., et al.: From laptop to lambda: outsourcing everyday jobs to thousands of transient functional containers. In: 2019 USENIX Annual Technical Conference (USENIX ATC 2019), pp. 475–488. USENIX Association, Renton (2019). https://www.usenix.org/conference/atc19/presentation/fouladi

  26. Fuller, B., et al.: SoK: cryptographically protected database search, pp. 172–191 (2017)

    Google Scholar 

  27. Gadepally, V., et al.: The bigDAWG polystore system and architecture, pp. 1–6 (2016)

    Google Scholar 

  28. Gadepally, V., et al.: Computing on masked data to improve the security of big data, pp. 1–6 (2015)

    Google Scholar 

  29. Gadepally, V., et al.: D4M: Bringing associative arrays to database engines, pp. 1–6 (2015)

    Google Scholar 

  30. Gadepally, V., et al.: Heterogeneous Data Management, Polystores, and Analytics for Healthcare: VLDB 2019 Workshops, Poly and DMAH, Revised Selected Papers, vol. 11721. Springer Nature (2019)

    Google Scholar 

  31. Gan, Y., et al.: An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 3–18. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3297858.3304013

  32. Gleixner, T.: Refactoring the Linux kernel (2017). https://kernel-recipes.org/en/2017/talks/refactoring-the-linux-kernel/

  33. Hutchison, D., Kepner, J., Gadepally, V., Fuchs, A.: Graphulo implementation of server-side sparse matrix multiply in the accumulo database. In: 2015 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7 (2015)

    Google Scholar 

  34. Jouppi, N.P., et al.: A domain-specific supercomputer for training deep neural networks. Commun. ACM 63(7), 67–78 (2020). https://doi.org/10.1145/3360307

    Article  Google Scholar 

  35. Kamath, A.K., Monis, L., Karthik, A.T., Talawar, B.: Storage class memory: principles, problems, and possibilities (2019)

    Google Scholar 

  36. Kedia, P., Bansal, S.: Fast dynamic binary translation for the kernel. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP 2013, pp. 101–115. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2517349.2522718

  37. Kepner, J., et al.: Mathematical foundations of the graphBLAS, pp. 1–9 (2016)

    Google Scholar 

  38. Kepner, J., et al.: TabulaROSA: tabular operating system architecture for massively parallel heterogeneous compute engines. In: 2018 IEEE High Performance extreme Computing Conference (HPEC), pp. 1–8 (2018)

    Google Scholar 

  39. Kepner, J., et al.: Associative array model of SQL, NoSQL, and NewSQL databases, pp. 1–9 (2016)

    Google Scholar 

  40. Kepner, J., et al.: Computing on masked data: a high performance method for improving big data veracity, pp. 1–6 (2014)

    Google Scholar 

  41. Kepner, J.: Parallel MATLAB for multicore and multinode computers. SIAM (2009)

    Google Scholar 

  42. Kepner, J., Cho, K., Claffy, K., Gadepally, V., Michaleas, P., Milechin, L.: Hypersparse neural network analysis of large-scale internet traffic. IEEE (2019). https://doi.org/10.1109/hpec.2019.8916263

  43. Kepner, J., et al.: 75,000,000,000 streaming inserts/second using hierarchical hypersparse graphblas matrices (2020)

    Google Scholar 

  44. Kepner, J., Jananthan, H.: Mathematics of Big Data: Spreadsheets, Databases, Matrices, and Graphs. MIT Press, Massachusetts (2018)

    MATH  Google Scholar 

  45. Khan, Y., Zimmermann, A., Jha, A., Gadepally, V., D’Aquin, M., Sahay, R.: One size does not fit all: Querying web polystores. IEEE Access 7, 9598–9617 (2019)

    Article  Google Scholar 

  46. Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using selective re-execution. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI 2010, pp. 89–104. USENIX Association, USA (2010)

    Google Scholar 

  47. Klimovic, A., Litz, H., Kozyrakis, C.: Reflex: Remote flash \(=\) local flash. In: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2017, pp. 345–359. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3037697.3037732

  48. Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., Kozyrakis, C.: Pocket: elastic ephemeral storage for serverless analytics. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2018), pp. 427–444. USENIX Association, Carlsbad (2018). https://www.usenix.org/conference/osdi18/presentation/klimovic

  49. Larabel, M.: The performance cost to selinux on fedora 31 (2020). https://www.phoronix.com/scan.php?page=article&item=fedora-31-selinux&num=1

  50. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science 368(6495) (2020)

    Google Scholar 

  51. Scaling in the Linux networking stack. https://www.kernel.org/doc/html/latest/networking/scaling.html

  52. Lozi, J.P., Lepers, B., Funston, J., Gaud, F., Quéma, V., Fedorova, A.: The Linux scheduler: a decade of wasted cores. In: Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2901318.2901326

  53. Lozi, J.P., Lepers, B., Funston, J., Gaud, F., Quéma, V., Fedorova, A.: The Linux scheduler: a decade of wasted cores. In: Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2901318.2901326

  54. Lu, J., Holubová, I., Cautis, B.: Multi-model databases and tightly integrated polystores: current practices, comparisons, and open challenges, pp. 2301–2302 (2018)

    Google Scholar 

  55. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learning scheduling algorithms for data processing clusters. In: Wu, J., Hall, W. (eds.) Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM 2019, Beijing, China, 19–23 August 2019, pp. 270–288. ACM (2019). https://doi.org/10.1145/3341302.3342080

  56. Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q.V., Dean, J.: Hierarchical planning for device placement (2018). https://openreview.net/pdf?id=Hkc-TeZ0W

  57. Mitchell, C., Geng, Y., Li, J.: Using one-sided RDMA reads to build a fast, CPU-efficient key-value store. In: Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX ATC 2013, pp. 103–114. USENIX Association, USA (2013)

    Google Scholar 

  58. Padioleau, Y., Lawall, J.L., Muller, G.: Understanding collateral evolution in Linux device drivers. SIGOPS Oper. Syst. Rev. 40(4), 59–71 (2006). https://doi.org/10.1145/1218063.1217942

    Article  Google Scholar 

  59. Poddar, R., Boelter, T., Popa, R.A.: Arx: an encrypted database using semantically secure encryption. Proc. VLDB Endowment 12(11), 1664–1678 (2019)

    Article  Google Scholar 

  60. Poimboeuf, J.: Introducing kpatch: dynamic kernel patching (2014). http://rhelblog.redhat.com/2014/02/26/kpatch/

  61. Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting confidentiality with encrypted query processing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pp. 85–100 (2011)

    Google Scholar 

  62. Reuther, A., et al.: Scalable system scheduling for HPC and big data. J. Parallel Distrib. Comput. 111, 76–92 (2018). https://doi.org/10.1016/j.jpdc.2017.06.009

    Article  Google Scholar 

  63. Reuther, A., et al.: Interactive supercomputing on 40,000 cores for machine learning and data analysis. In: 2018 IEEE High Performance extreme Computing Conference (HPEC) (2018). https://doi.org/10.1109/hpec.2018.8547629

  64. Shan, Y., Huang, Y., Chen, Y., Zhang, Y.: LegoOS: a disseminated, distributed OS for hardware resource disaggregation. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation, OSDI 2018, pp. 69–87. USENIX Association, USA (2018)

    Google Scholar 

  65. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux security module. Technical report (2001)

    Google Scholar 

  66. The snowflake cloud data platform. https://www.snowflake.com/

  67. Song, C., Lee, B., Lu, K., Harris, W., Kim, T., Lee, W.: Enforcing kernel security invariants with data flow integrity. In: 23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, 21–24 February 2016. The Internet Society (2016). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enforcing-kernal-security-invariants-data-flow-integrity.pdf

  68. Stonebraker, M., Çetintemel, U.: “One size fits all” an idea whose time has come and gone. In: Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker, pp. 441–462 (2018)

    Google Scholar 

  69. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing across heterogeneous data models: a survey, pp. 3211–3220 (2017)

    Google Scholar 

  70. Thumshin, J.: Introduction to the Linux block I/O layer (2016). https://media.ccc.de/v/784-introduction-to-the-linux-block-i-o-layer

  71. Tsai, C.C., Jain, B., Abdul, N.A., Porter, D.E.: A study of modern Linux API usage and compatibility: what to support when you’re supporting. In: Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2901318.2901341

  72. Weisenthal, J.: Reinhart and Rogoff: ‘full stop’, we made a microsoft excel blunder in our debt study, and it makes a difference (2013). https://www.businessinsider.com/reinhart-and-rogoff-admit-excel-blunder-2013-4

  73. Wikipedia: AWS Lambda (2020). https://en.wikipedia.org/wiki/AWS_Lambda

  74. Wikipedia: General data protection regulation (2020). https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

  75. Attribute-based access control – Wikipedia, the free encyclopedia (2020). https://en.wikipedia.org/w/index.php?title=Attribute-based_access_control&oldid=967477902

  76. Completely fair scheduler – Wikipedia, the free encyclopedia (2020). https://en.wikipedia.org/w/index.php?title=Completely_Fair_Scheduler&oldid=959791832

  77. Yakoubov, S., Gadepally, V., Schear, N., Shen, E., Yerukhimovich, A.: A survey of cryptographic approaches to securing big-data analytics in the cloud, pp. 1–6 (2014)

    Google Scholar 

  78. Zamanian, E., Yu, X., Stonebraker, M., Kraska, T.: Rethinking database high availability with RDMA networks. Proc. VLDB Endow. 12(11), 1637–1650 (2019). https://doi.org/10.14778/3342263.3342639

  79. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information flow explicit in HiStar. Commun. ACM 54(11), 93–101 (2011). https://doi.org/10.1145/2018396.2018419

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Science Foundation CCF-1533644 and United States Air Force Research Laboratory Cooperative Agreement Number FA8750-19-2-1000. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the United States Air Force. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. The authors would also like to thank Charles Leiserson, Peter Michaleas, Albert Reuther, Michael Jones, and the MIT Supercloud Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Gadepally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cafarella, M. et al. (2021). A Polystore Based Database Operating System (DBOS). In: Gadepally, V., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2020 2020. Lecture Notes in Computer Science(), vol 12633. Springer, Cham. https://doi.org/10.1007/978-3-030-71055-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71055-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71054-5

  • Online ISBN: 978-3-030-71055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics