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Abstract. Agricultural robots are subject to a much harsher envi-
ronment than those in the factory or lab and control strategies need
to take this into account while maintaining a low cycle time. Three
control strategies were tested on Vegebot, a lettuce-picking robot, in
both simulation and on the real robot. Between a fast open loop that
was vulnerable to environmental noise and a slow but robust visual
servoing technique, a Learned Open Loop strategy was tested where
the robot learned from successful picks to pick at an intermediate
speed. This reduced the projected cycle time from 31s to 17.2s, a
45% reduction.

1 Introduction

Agriculture has historically been labour-intensive and subject to the vicis-
situdes of the weather, but automation has increased efficiency and had a
downward effect on prices. However, automation has not been achieved for
many crops and a series of challenges for agricultural robots have been ex-
posed. Farmers’ fields are not as sheltered as factories and robots will en-
counter vibrations, hard-to-navigate terrain and rough weather conditions,
affecting every aspect of how they are designed and built. The present paper
describes different approaches to tackling one particular problem for har-
vesting robots, that of reaching for and grasping the target vegetable under
environmental noise.

This paper builds on the previously published work on the Vegebot [1],
a lettuce-picking robot (Fig. 1). Lettuce harvesting is still a difficult man-
ual task for farm labourers; the goal for Vegebot is to autonomously and
accurately harvest lettuces without damaging them, in the shortest possible
cycle time. The first iteration of Vegebot automated harvesting, achieving a
cycle time of 31s (compared to a human cycle time of 6s), a harvest success
rate of 88% and a damage rate of 38% [1]. All of these metrics need to be
improved, but the most glaring failing is a cycle time that is 5 times slower
than a human. Speed is critical to make the device economically viable, and
new techniques are required for this.

Vegebot needs to swiftly move the end effector to the visually identi-
fied target lettuce. One problem that complicates this seemingly simple goal
is the unpredictable and rough environment in which agritech robots find
themselves. Robots with a less than perfect self-model and subject to envi-
ronmental noise and wear and tear have difficulties in transforming a visual
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Fig. 1. The Vegebot: (a) Vegebot deployed for field trials (b) Vegebot in the lab
with a ”virtual” lettuce.

cue into a precise location in robot task space. Early experiences in the field
with Vegebot suggested that dealing with these conditions will be a central
challenge for many different types of harvesting devices.

The purpose of this paper is threefold: (1) to develop a realistic simulation
platform for Vegebot, (2) to test new harvesting algorithms, including visual
servoing and learned behaviours and (3) to optimise the operation of Vege-
bot in the real world in terms of speed and accuracy under environmental
perturbations. With a robust perception and reaching strategy, harvesting
robots could produce a greater yield with a shorter cycle time.

Extensive detection and manipulation work has been performed on other
individual crops such as broccoli [2], strawberries [3] and apples [4]. A good
overall review with important metrics definitions can be found in [5]. Many
of the crops that have been successfully automated such as tomatoes and
sweet peppers have done so in semi-sheltered environments [6], where they
are less subject to the environmental wear and tear tackled here.

Visual servoing has been extensively studied; see [7] for a review and [8]
for an example application in harvesting. The use of multiple cameras for
visual servoing along with authority switching algorithms has also been ex-
plored, for example in [9], which uses distance derived from an RGBD sensor
to determine the change of authority. RGBD sensors are problematic out-
doors, so Vegebot simply uses the presence or absence of the target in the
end effector camera to switch authority.

2 Technical Approach

Vegebot has now been deployed in three environments: in physical field trials
(see Fig. 1a), in the lab (see Fig. 1b) and in simulation (see Fig. 2). Field trials
have been described in the previous paper [1]; for this paper experiments were
performed in the lab and in simulation.
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2.1 The real Vegebot

The Vegebot platform is two metres wide, 55cm high and 140cm long; the
wheels straddle a standard sized lane of lettuces in the field. A Universal
Robotics UR10 arm is mounted on top of the platform and carries a custom-
designed end effector, which contains a soft gripper (for holding the lettuce)
and a blade (for cutting the stalk) driven by pneumatic actuators via a
circular belt. In its current form, the end effector weighs almost 10kg, at the
limit of what the arm can support.

Vegebot has a two-camera vision system. One camera (640x480 pixels) is
mounted on an overhead support and provides a broad view of the workspace.
A second camera (320x240 pixels) is mounted inside the end effector and
allows for fine adjustment in positioning as the end effector descends over the
lettuce. Both cameras can localize lettuces, while the overhead camera can
also estimate the relative pose of the platform and end effector from their
attached Aruco boards (see Fig. 2). The robot arm will generally occlude
much of the platform and end effector in the overhead camera’s view, but
the partially visible Aruco boards provide consistent readings nevertheless
at an update rate of 6Hz.

A two-stage localisation / classification pipeline detects the lettuces vis-
ible in each camera. First, a YOLO network localises the lettuces, passing
the cropped images of each one to the second stage. This latter stage clas-
sifies them as harvest-ready, immature or diseased. YOLO is a fast object
detection neural network architecture [11]. The two stages are necessary to
compensate for the unbalanced datasets available and could be collapsed into
one on a full production system [1]. The output of the full pipeline is a set of
lettuce hypotheses, updated at 5.5Hz on current hardware: each hypothesis
with a bounding box in normalized u, v pixel coordinates and a class label,
as shown in Fig. 2.

Finally, the robot contains an IMU (Adafruit IMU BNO055) for measur-
ing the absolute orientation of the platform and a laptop with a gaming GPU
for managing the whole system. The IMU is connected to an Arduino which
streams quaternions to the laptop via a USB connection. The Vegebot soft-
ware was built on ROS (Robot Operating System) in Python, PyTorch and
JavaScript. Inverse kinematics and dynamics are calculated by the UR10’s
built-in controller.

2.2 The simulated Vegebot

The purpose of building a simulated Vegebot (see Fig. 2) was to provide
a platform for experimentation of different control and learning strategies.
CoppeliaSim 4.0 was selected, which provides a ROS-compatible environ-
ment with a ready-made model of the UR10 and pluggable physics engines.
The Newton physics engine provided the best stability, and a model of the
Vegebot platform was created using the real robot’s dimensions and weights.
The simulation ran at around 10 frames per second.

Virtual cameras were used for overhead and end effector cameras. Pho-
tographs of earth from the lettuce fields were mapped onto the ground tex-
tures. Wrapping photographs of lettuces onto spheres did not work with the
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Fig. 2. The Vegebot simulated using CoppeliaSim. Virtual camera fields are inset
and a ”virtual” lettuce is shown.

real robot’s vision system; presumably the features picked up by YOLO were
distorted and no longer recognisable. Instead, an overhead photograph of a
lettuce was mapped onto a flat circle, and this was topped with an almost
transparent sphere, to give the simulated end effector something to grip onto
(see Fig. 2. With that, the vision system worked from the virtual cameras
in the same way as on the physical robot, providing bounding boxes (see
camera insets on Fig. 2).

There remained the problem of reproducing the arm’s movements from
inverse kinematics in simulation. Previous work found the onboard UR10
controller to be more reliable than the ROS kinematics package. Fortunately,
Universal Robotics provide a simulation of the controller called URSim which
accepts position or velocity commands and streams the position of a virtual
UR10 arm. This stream is translated into ROS messages and fed to the arm
model in CoppeliaSim which then tracks the controller’s virtual arm model.
The software arrangement can be seen in Fig. 3. The bulk of the Vegebot
software can be used unaltered in the two configurations.

Fig. 3. The Vegebot Software Architecture: (a) on the real Vegebot (b) in simula-
tion, with simulated cameras and IMU, plus a simulated arm tracking the output
of the URSim simulated controller.
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2.3 The Three Control Approaches

Once the vision system has detected the bounding box of a target lettuce,
the end effector must be moved to a position just above the target and then
brought down to the ground to envelope, grip and cut it. Three new control
approaches were tested, first in simulation and then on the real Vegebot. Each
method has two sequential stages (Fig 4) and begins with the Overhead
Camera feeding a stream of 640x480 images to the Lettuce Detector,
which generates one or more bounding boxes BBo.

Fig. 4. Control System Information Flow for the three harvesting methods. The
sources of delay are indicated in red.

In the first of the new approaches, Open Loop control, a static Pro-
jection Model transforms the bounding box coordinates BBo into an esti-
mated 3D location in the robot arm space T . This model derives T by using
knowledge of the camera’s geometry to project a vector from the camera
through the centre of the bounding box to where it intersects with an esti-
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mated ground plane. The system then calculates the Pre-Grasp Position
T ∗, which is some 20cm vertically above T .

In Stage 1 of the movement, the end effector is moved using inverse
kinematics to the Pre-grasp position T ∗, and then in Stage 2 drops down
to T so that the lettuce is left in the centre of the end effector cage. This
End Effector Inverse Kinematics Control is executed by the UR10’s
controller (or URSim in simulation). The resulting movements are fast, but
not robust to noise or to inaccuracies in the described projection model. It
is a variant of the method used on the original Vegebot.

In the second approach, Two Stage Servoing, visual servoing is used
to continually adjust the velocity vxyz in robot arm space of the end effector
to approach the visual target. The Lettuce Detector provides a bounding
box BBo for the lettuce as before, but the overhead camera image stream is
also passed to an Aruco Board Detector (EE) which returns a Bounding
Box BBa for the top of the end effector.

An offset duv between the centres of the two bounding boxes BBo and
BBa is calculated in normalized pixel coordinates, and this is used to derive
the overall desired end effector velocity vxyz in the module Calculate Offset
in Overhead Camera:

vxy = −αcamduv (1)

vz = −βcam[(z − ztarget) +
γcam

|duv|+ 0.1
] (2)

where z is the z position of the end effector in robot arm space, ztarget is
the estimated z position of the ground and αcam, βca and γcam are constants
that are defined separately for each camera. The resulting velocity commands
vxyz are passed to the UR10 Controller (or URSim) in the module End
Effector Velocity Control. The end effector will accelerate towards the
lettuce in the XY plane while slowly descending.

The overhead camera retains authority until the lettuce becomes visible
in the end effector camera, at which point Stage 2 commences. Authority
is switched to the End Effector Camera the output of which is used by
the Lettuce Detector to derive a new, close-up bounding box BBee. The
offset duv is now the offset of the centre of BBee from the centre of the visual
field and the module Calculate Lettuce Offset from Centre derives the
desired velocity vxyz using the same equations (1) and (2) but with different
constants for αcam, βcam and γcam. The end effector continues to approach
the centre of the lettuce while now descending faster; given that the lettuce
is close in the XY place, there is less chance of missing the target by moving
down too quickly.

The Two Stage Servoing approach is limited in velocity by the speed of
updates from the perceptual system (around 5Hz on the current hardware)
but is more robust to environmental noise and changes in body shape: as the
Vegebot receives blows, the trajectory self-corrects (within limits).

The third approach, Learned Open-Loop, attempts to combine the
speed advantages of the first approach with the robustness of the second.
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Var. Description Units
Frame of ref-
erence

Dim.

Pa
Pose of end effector
Aruco board

Position (x, y, z)
Orientation (x, y, z, w)

Overhead
camera

7

Pv
Pose of platform
Aruco board

Position (x, y, z)
Orientation (x, y, z, w)

Overhead
camera

7

Rv IMU orientation Orientation (x, y, z, w) World 4

BBo

Bounding box of
lettuce in overhead
camera

Centre, width, height
(u,v,w,h) in normal-
ized pixel coordinates

Overhead
camera image

4

T
Pose of end effector
that places it over the
lettuce

Position (x, y, z)
Orientation (x, y, z, w)

Robot arm 7

Table 1. Input and output variables to the Learned Open Loop neural network.

As well as the Lettuce Detector, the Aruco Detector (EE) now gen-
erates an estimated pose Pa for the end effector, and an additional Aruco
Detector (Platform) derives an estimated pose Pv for the platform using
the second Aruco Board, both poses being estimated in overhead camera
space. The IMU measures the absolute orientation Rv of the platform as a
quaternion in world space.

Next, a Neural Network that accepts BBo, Pa, Pv and Rv as inputs
and generates position T as an output, estimating the lettuce pose in robot
arm space using the available sensory data (equation 3). T ∗ is derived in the
usual way, begin 20cm above T . These variables are listed in Table 1 and are
shown in Fig. 2.

T = f(Pa, Pv, Rv, BBo) (3)

The input variables are mapped to T using 4 fully-connected layers, tanh
activation functions, a mean squared error loss function and the Adam opti-
mizer. The input and output layer size is determined by the dimensions of the
variables in Table 1. The size and number of the hidden layers was arrived
at by iterative experimentation, trading off training speed against accuracy.
The neural network was trained for 2000 iterations (Fig. 5), using data taken
from successful Two-Stage Servoing picks. Separate datasets were gathered
in simulation and reality: in simulation 2000 samples were gathered, while
on the real robot a smaller dataset of 50 successful picks was duplicated to
form 2000 samples and found to work quite acceptably.

Fig. 5. (a) The inputs and outputs to the Learned Open Loop neural network. (b)
Training the neural network over 2000 iterations.
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Fig. 6. Experiment One: End effector trajectories under the different control sys-
tems, (a) in simulation and (b) on the real robot. The graphs on the left show the
end effector’s trajectory in the X-Y plane with the start and end points labelled
with time t. The graphs on the right show the end effector’s trajectory along the
Z axis, with time t along the bottom. The vertical purple lines indicate the start
and end of the picking sequence.

Stage 1 of the movement is open loop and fast, with the end effector
moving swiftly to T ∗. Stage 2 is identical to stage 2 of Two-Stage Servoing,
with the end effector descending over the lettuce, self-correcting as it goes.
As a result, Learned Open Loop is faster than Two Stage Servoing, while
retaining much of its robustness.

3 Experiments and Insights

3.1 Experiment One: Three different control systems

Experiment: The three different control methods were tested for speed
in simulation and then on the real Vegebot robot in the lab environment.
A lettuce (either a paper photograph for the lab environment or a sphere
and texture mapped disc in simulation) was placed on the ground and each
control method was tested 5 times.

Results in simulation: The Open Loop method is the fastest method
(2.4s duration) as it can ignore any further sensory information once started
(see Fig. 6). The end effector accelerates and moves rapidly in a straight
line towards T ∗ as quickly as the hardware permits. On reaching T ∗ it ac-
celerates downwards towards the ground. The changeover between the two
stages can be seen as a kink in the time series graph of Fig. 6 (a) (Open loop,
Simulation), at t = 8.0s. Note that the end point of the trajectory does not
coincide perfectly with the lettuce centre, due to noise in the vision system
and an imperfect static model.
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The Two Stage Servoing method is the slowest (7.3s duration). While
the arm could travel faster, the bounding box updates will then lag behind
and the end effector may miss the lettuce. In the first stage the descent in
Z is slower (between t = 2.0 − 4.5s) than the first method (Fig. 6a, centre
right). Descending too rapidly runs the risk of the lettuce falling outside
the field of view of the end effector camera, which then misses the target.
In the second stage (between t = 4.5 − 9, 3s) the descent is faster, but still
limited by the need to arrive cleanly at the XY position of the lettuce before
touching ground.

The Learned Open Loop is a compromise between the first two meth-
ods (4.0s duration). The first stage is open loop (between t = 6.0−7.4s) with
rapid descent. The second stage uses the same algorithm and parameters as
the Two Stage Servoing, using the bounding box BBee to drive the velocity
control (between t = 7.4 − 10.0s). This second stage could potentially be
further optimised for speed, sacrificing robustness to errors in the learned
value of T . This would steepen the second stage curve (Fig. 6, bottom right)
reducing overall travel time to close to the Open Loop value, but missing
the lettuce in the face of extreme environmental noise.

Results on real robot: The trajectories on the real robot are slower, but
follow the same pattern as in simulation. Open Loop is the fastest (4.8s
duration), Two Stage Servoing is the slowest (8.9s duration) and Learned
Open Loop is a compromise (6.2s duration).

The velocities of the different stages of the trajectories had to be adjusted
downwards on the real robot for two main reasons. Firstly, more protective
stops were triggered by the UR10 controller on the real robot than on the
URSim software. This suggests that the URSim’s simulation of the behaviour
of the arm controller under real conditions is not exact. Secondly, the geom-
etry of the real USB cameras differed from the simulated ones, meaning that
the successful handover from overhead to end effector cameras was more
sensitive to end effector velocity. The simulated cameras will be altered in
future work.

Overall though, the three different control methods that were prototyped
in simulation worked in reality, with minimal adjustments.

3.2 Experiment Two: Robustness to perturbations and distance

Experiment: The second experiment was designed to test the control meth-
ods’ robustness to perturbations in the system and to the initial distance of
the lettuce from the parked end effector.

Perturbations were added to the simulation by moving the UR10 arm off
its usual alignment. In the simulator, a virtual ball joint was introduced under
the arm and the yaw, pitch and roll modified. On the real robot, the platform
itself was inclined while keeping the overhead camera support vertical. The
magnitude of the perturbations is given by the IMU and measured in radians,
referring to the yaw pitch and roll angles introduced.

On the real Vegebot platform, for practical reasons, the perturbations
were modelled slightly differently. The end of the platform was jacked up to
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Fig. 7. Experiment Two: The three control systems in simulation and reality as
perturbations are added (left) and the distance of the parked end effector to the
lettuce is increased (right). The top graphs in each block show the final distance
of the end effector centre from the lettuce. The middle graphs show the trajectory
time. The lower graphs show failed picks from a total of 5 attempts.

incline it to a similar angle to the ball joint method. The overhead camera
was then adjusted back to a vertical orientation. This is similar, but not
geometrically identical to the method used in simulation. 5 sample picks
were made for each combination of perturbation size and control method.

In separate tests, the distance of the lettuce from the parked en effec-
tor was varied to ensure that the methods worked over the range of the
workspace. 5 sample picks were made for each combination of distance and
control method.
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Results in simulation: The results in simulation can be seen on the top
half of Fig. 7). The position error of Open Loop degrades as the noise is
increased, to the point where 100% of the picks fail when the noise reaches
0.25 radians. Learned Open Loop and Two Stage servoing are robust to the
noise, as the visual servoing component brings the end effector back to the
correct position. In terms of picking time though, Open Loop is fastest as
once the initital lettuce localisation is performed, no further vision system
updates are required. Two Stage Servoing is slowest, as it needs to move
slow enough not to outpace the localisation update rate. In some ways, it is
an over-cautious strategy: it would work even if the lettuce moved. Learned
Open Loop, a combination of a fast open loop approach for stage 1 and
slower servoing servoing in stage 2, resulting in a picking time between the
two extremes.

The results for varying lettuce distance are as expected: there is no vari-
ation in picking error with distance from the parked end effector, suggesting
that the projection model is accurate.

Results on real robot: Results on the real robot follow the trends seen
in simulation. The increase in position error on Open Loop (from 3 to 9
cm) is not as extreme as in simulation: practical considerations prevented
noise being applied to all three rotational exes. Learned Open Loop and Two
Stage Servoing are robust to low noise, as in simulation, and the differences
in picking time follow the same ordering. In general, it proved necessary to
run the real robot at a lower velocity than the simulated version to prevent
misses and protective stops.

Failures in Open Loop start at a lower noise level (0.10 radians), than in
simulation (0.25 radians). In addition, Learned Open Loop fails as much as
Open Loop does at the highest noise level (0.25 radians): the targeted posi-
tions are too far from the real ones to give the servoing time to compensate.
Picking error distance increases with lettuce distance, suggesting inaccura-
cies in the projection model that grow towards the edge of the visual field.

4 Conclusion

All the tested methods show the expected trade-offs in simulation and in
reality. Open loop harvesting is fast but vulnerable to pertubations and to
model imperfections. Two Stage Servoing is more accurate and robust,
but slower where the frequency of vision updates is constrained by the vi-
sion system hardware. The speed of the Learned Open Loop method lies
between the other two, trading off some robustness to improve speed. There
is an analogy here to human reaching, where an open-loop initial ballistic
reach moves the wrist to the vicinity of the target object, followed by a more
measured feedback-driven grasping process [10].

The Vegebot therefore has a number of picking strategies to choose from.
Under normal circumstances, it should choose the fastest strategy that works.
To the extent that it can measure its own picking error (or receive feedback
from a human operator), it could adaptively switch between methods. This
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suggests a combined strategy that would be resistant to slight perturbations
and changes in body shape caused by wear and tear in the field.

Each time Vegebot successfully picks a lettuce, the final position could be
added to a ”successful pick buffer”. Once this buffer reaches a certain size,
the samples could be augmented through cloning and the neural network
retrained. While 2000 training iterations were required to train the network
(Fig. 6 (b)), only 50 successful pick samples were actually used on the real
robot. This suggest that Vegebot could adapt quickly to wear and tear by
falling back to a robust but slow method like Two Stage Servoing as soon
as it starts detecting picking errors, gather a set of successful picks and then
retrain itself. By using Learned Open Loop, the approach time of 20s can be
reduced to 6.2s and so the overall cycle time decreased from 31s to 17.2s, a
45% improvement and closer to the target human value of 6s.
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