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Abstract. Nonprehensile manipulation involves long horizon underactu-
ated object interactions and physical contact with different objects that
can inherently introduce a high degree of uncertainty. In this work, we
introduce a novel Real-to-Sim reward analysis technique, called Rieman-
nian Motion Predictive Control (RMPC), to reliably imagine and predict
the outcome of taking possible actions for a real robotic platform. Our
proposed RMPC benefits from Riemannian motion policy and second
order dynamic model to compute the acceleration command and control
the robot at every location on the surface. Our approach creates a 3D
object-level recomposed model of the real scene where we can simulate
the effect of different trajectories. We produce a closed-loop controller
to reactively push objects in a continuous action space. We evaluate the
performance of our RMPC approach by conducting experiments on a real
robot platform as well as simulation and compare against several base-
lines. We observe that RMPC is robust in cluttered as well as occluded
environments and outperforms the baselines.

1 Introduction

Nonprehensile object manipulation is an important and yet challenging robotic
task that has been studied for more than three decades [20], yet remains an
area of active research [17,21]. Nonprehensile manipulation involves long horizon
underactuated object interactions and physical contact with different objects that
can inherently introduce a high degree of uncertainty. Suppose we want to push
an object on a surface cluttered with many other objects with various shapes
and properties. In such a scenario, predicting the outcome of a push action is not
trivial as pushing an object not only affects its own status but also can change
the status of other objects.

Traditionally, motion planning and search algorithms were adopted for non-
prehensile manipulation. These algorithms traditionally have high computational
cost and rely on full knowledge of a constrained workspace to produce a sequence
of kinematic actions [20]. To address the computational complexity brought by
uncertainty, the quasi-static planners aim to predict the motion of pushed objects
by assuming a physical model of the world involving shape, friction and objects
center of mass [18].

More recently, deep learning has been adopted for learning simple robotic
manipulation skills using visual sensory input in a controlled scenario [15,2,16].
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Central to their approach is to train a deep neural network model in a data-driven
fashion to predict the cost of applying different robotic actions for accomplishing
tasks. While it is essential to reliably predict the cost of taking possible actions
in a real robotic task, it is challenging to obtain the data and the supervision
needed for training such cost function in less constrained scenarios.

Instead of estimating the cost of different actions, can we instead simulate
the real environment in an on-line closed-loop such that we can compute the
outcome of taking possible actions inside the simulation? In this paper, we
address this question by proposing to analyse and compute rewards through
sensing and simulating the real world environment using 3D object-level geometric
recomposition, a Riemannian Motion Policy (RMP), and second order dynamics.
Our Real-to-Sim reward analysis technique, called Riemannian Motion Predictive
Control (RMPC), simulates the effect of different trajectories and action outcomes
on a real robotic platform and creates a closed-loop reactive controller to push
objects in a continuous action space. To control the robot at every location on
the surface, we incorporate a Riemannian Motion Policy [6] and second order
dynamic model to compute the acceleration command.

Our goal is to produce an efficient second order dynamic system controller
that maintains a continuous trajectory while preserving correct kinematics and
smooth dynamics for nonprehensile object manipulation, in the presence of a
high amount of uncertainty. To accomplish this goal, we focus on leveraging
simulation to predict parameters of our second order controller. Instead of
estimating the accurate physical parameters of the scene such as center of
mass and surface friction we apply a reactive controller that deploys closed-
loop feedback. Consequently, we are capable of correcting the motion if, due to
uncertainties involved, the object deviates from the foreseen trajectory.

2 Related work

Conventionally, planning algorithms has been deployed for solving nonprehen-
sile manipulation by incorporating search techniques to create a trajectory of
kinematic movements for a robot arm to push or rearrange objects [7,29,13]. To
push various objects on simple trajectories, [9] learns to predicts suitable contact
points by optimizing a scoring function trained on histogram features. To reach
objects in clutter, [14] deployed Model Predictive Control (MPC) [31] to model
the dynamics of a robot arm in contact with the environment. Compared to these
past methods, our approach is more general and more efficient and the task we
consider is more challenging and involves multiple object interactions.

More recently, deep learning has been incorporated for learning simple manip-
ulation skills with a robot arm. [2] predict the outcome of a pushing action by
training a network on pairs of RGB images of before and after push action. This
work is extended in [21] to learn a forward models for manipulating a rope with
a robot arm in a supervised fashion. Using a series of observations via camera
images, [17] tracks a history of push interactions and learns a model for pushing
in scenarios with only a single object on the table and quantizing the action
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Fig. 1. Overview of our approach. Top row shows the rgb snapshots of the point
cloud stream input to our model which we use to recompose the scene into a simulated
3D scene (middle row) and generate look ahead motion field (bottom row).

space. In contrast, our method is designed to be applicable in complex scenarios
involving several objects and our controller produces continues actions.

Our work is related to recent efforts for deploying 3D and physics simu-
lation environments for efficiently learning robotic policy. Several past works
deployed domain adaptation to transfer policies learned in simulation to the
real world [24,4]. Domain randomization was proposed in [26] to train highly
generalizable robotic policies inside a randomized simulation environment and
was shown to be successfully applicable in various robotic applications [11,30,3].
In [4] pixel-level image generation was incorporated to create auxiliary source of
data. [12] learned to translate real and simulation data into a canonical repre-
sentation to be used as robot observation. Several past works incorporated real
images as a complementary source of data for learning control policies inside
simulation that can be transferred to the real world [4,27,25]. In contrast to
all these works, we generate the simulation environment by recomposing the
3D scene and incorporating simulation physics environment as a computational
model for predicting the outcome of robot action trajectories in a closed loop.
To our knowledge, closed loop 3D scene recomposition and simulated action
look ahead has not been addressed before for efficient policy evaluation inside
simulation that is applicable in the real world.

3 Approach

We assume a nonprehensile robotic manipulation setup withN objects oi,i∈{1,...,N}.
Each object has 5 degree-of-freedom (5-DoF) defined by its rotation R ∈ SO(3)
and translation T ∈ R2 and can take any arbitrary pose p in SE(2) on the plane.
All the objects are movable on the plane and can be displaced from a location and
pose to another physically feasible pose on the plane so at any time t, the state
of the world st encapsulates the pose of the objects in the scene st = (p1, ..., pN ).
Given a target object oc and a goal location lg = (xg, yg) as inputs, we want to
control the target object oc by pushing it to lg. To accomplish that, we need to
find the best sequence τ of robot actions τ = {u0, u1, ..., ut} that pushes oc to lg
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Fig. 2. Sample pushing tasks for RC-car.
while satisfying the constraints such as avoiding collision with other objects as
well as maximizing a reward function. Each robot action u is defined by the ve-
locity and acceleration of a push by a robot end-effector, i.e. ut = (vx, vy, ax, ay).
At every iteration, our goal is to estimate a short trajectory of future actions τ
that maximizes the expected sum of future rewards. By applying each action
ut at state st, a reward rt(st, ut) will be obtained which reflects how much the
object has progressed in becoming closer to the goal location. If the action ut
results in a collision between the controllable object oc and any of the objects in
the scene ok,k∈{1,...,N},k 6=c then a penalty would be considered. More formally,
the reward at each step rt is defined as:

rt(st, ut) = ∆(dtoc,lg , d
t−1
oc,lg

)−
N∑

i=1,i6=p

d(pti, p
t−1
i ) (1)

The first term in Equation 1 reflects how much the distance of oc to the goal
location doc,lg has changed between time t− 1 and t and d denotes the Euclidean
distance. The second term of Equation 1 quantifies the collision event that might
occur by applying action ut. During one step of push action, if the controllable
object oc collides with any other object oi, it will result in an unwanted change
of 5-DoF pose in oi. To quantify the collision event, we compare the pose of each
object pi between the time t and t− 1 by computing the Euclidean distance d
between pti and p

t−1
i . Accordingly, the reward of a trajectory τ with fixed horizon

H is computed as: Rτ =
∑t+H
j=t γ

j−trt with the decay factor of γ.

3.1 Closed-Loop Control

We use RMPflow [6] to compute the sequence of robot actions based on the
current robot position and velocity and the configuration of scene objects. The
RMPflow combines local policies in their coordinate system and computes a
global policy for the robot motion. We use attractor policy for pushing to the
goal and collision avoidance policy for avoiding obstacles. By combining these
local motion policies the potential field of robot action is computed in continuous
space which determines the robot global motion policy at every location. Suppose
the average dimension oc along its width and length is m̄oc and its location on the
plane is loc = (xoc , yoc). The local policy in the coordinate of the target object
rotated by the orientation of the RMP global policy for an immediate pushing
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Fig. 3. Examples of fully automatic object-level scene recomposition from the point
cloud. The first and second rows show the side view and the top view of the captured
point cloud. The third row shows our object-level scene recomposition.

action is defined by (vx, vy) = (α1x
2 − α2y

2 − α3(
m̄oc

2 )2, α4xy) and αis are the
hyperparameters of our local potential field.

3.2 Riemannian Motion Predictive Control

Using the computed RMPflow [6] we can select an action ut at each time step t to
find the optimum trajectory to push oc to lg. However, in dynamic systems with
a high degree of uncertainty selecting the actions purely based on RMPflow may
not be optimal specially in underactuated tasks [19] such as ours where the target
object makes and breaks contact the with robot end-effector and other objects.
Therefore, we propose Riemannian Motion Predictive Control (RMPC) where
instead of fixing a single parameter for computing the RMPflow, we consider a
range of weights for each node. By sampling from the different node weights, we
produce different pushing trajectories at every time step t and select the next
best action based on the trajectory with the highest estimated reward using
Equation 1.

Designing an accurate reward function and learning to predict the outcome
of different action sequences is challenging due to inefficiencies in collecting real
robot data and inherent uncertainties in under-actuated and non-prehensile object
manipulation. To alleviate those challenges, our proposed method estimates the
reward of different sampled action trajectories by recomposing the 3D scene
and imagining the outcome of different action trajectories inside a 3D physics
simulation. We leverage the power of 3D physics simulation to look ahead
the outcome of pushing an object along different trajectories by proposing to
recompose the 3D scene at each step during the trajectory. In our setup, we have
a depth camera that captures the scene and we incorporate sensory point cloud
input for object-level scene recomposition. Using the captured point cloud, we
detect 3D objects in the scene. Once we recomposed the scene using object-level
3D shapes, we migrate the scene to a physics simulator to evaluate the outcome
of different pushing trajectories. To train a 3D object detector that is robust
to clutter and high amount of occlusion, we generate a high volume of diverse
synthetic data in a simulation environment inspired from prior work of [10]
and domain randomization [26]. We create a huge number of diverse scenes by
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Fig. 4. Real world RC-car robot action trajectory generated by proposed RMPC. Each
row shows a trial with a different initial location of the target object, other objects as
obstacles. The goal location is indicated with a green dot.

randomly dropping objects in a physic simulation. Such data generation approach
will capture the realistic physical arrangement of objects on a surface and results
in learning a more efficient 3D object detector. Figure 1 illustrates the overview
of our approach where scenes captured by point clouds are recomposed in a 3D
simulation environment where we can compute the look ahead motion field.

3.3 Implementation Details

We implemented our method using PyTorch [23] and used Bullet physics engine for
simulating the scenes [8]. We generate over 1 million simulated scenes diversified
with random object arrangements and floor texturing to train our 3D object
detector and Figure 2 provides several examples of the generated scenes. The speed
of our recomposition step is 15 frames per second. We set the hyperparameter of
our local field to αis= 1 in all our experiments.

4 Experiments

We conduct experiments both in simulation and in a real world to evaluate the
performance of our proposed approach for nonprehensile manipulation. To evalu-
ate the performance of our proposed approach for nonprehensile manipulation
we conduct experiments both in simulation and in a real robot platform.

4.1 Experimental Setup

In our evaluations, We use objects of the YCB dataset [5] in simulation and in
the real world experiments. For real robot experiments, we build a real RC-car
hardware platform on a 1/10 chassis featuring a 4×4 suspension, and non-flat
tires inspiring from the prototypes introduced in [1,28]. To control the RC-car we
use move commands that define the velocity and steering direction of the RC-car
through a ROS interface. In the real experiments, we localize the RC-car robot
using the April tag [22] while we detect and localize other scene objects by 3D
object detection as explained in Section 3.
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Fig. 5. Results of collision rate on held out test set using proposed Riemannian Motion
Predictive Control (RMPC) on RC-car robot platform for pushing target object to goal
location compare to prior works. (higher recall in lower collision rate is better).

4.2 Results on Simulation

To evaluate our proposed motion policy we generate a held-out test set of scenes
with a different combination of objects and various arrangements in simulation.
To produce diverse scenarios, we randomly place objects in random locations
of the workspace surface area and randomly select the target object and goal
location in simulation. Figure 2 shows several examples of push tasks at test
time. We use 500 held-out test scenes on our simulated RC-car robot platform
and compare performance based on the collision rate. We compute the recall
rate at the k%-collision ratio as evaluation criteria. For each trial, the collision
ratio is computed by dividing the number of collision events by the total length
of the trajectory. A higher recall rate at a lower collision ratio indicates better
performance.

We compare the performance of our RMPC method against several baselines:
Riemannian Motion Predictive Control (RMPC): Our proposed RMPC

recomposes scene from input point cloud and computes different trajectories
using RMPflow with different weights. The next best action is selected based on
future reward obtained from Equation1

Riemannian Motion Policy (RMP): RMP generates the action trajectory
based on the computed RMPflow with a fixed parameter similar to [6].

Model Predictive Control (MPC): MPC samples different trajectories
at each step and selects the next action from the trajectory with the smallest
cost in a closed-loop. The cost function is computed based on the distance of
the target object and the location of the obstacles so the trajectory that moves
closer to the obstacles is of higher cost.

Open-loop control: This baseline is similar to MPC except that it computes
the whole trajectory from the initial location of the target object to the goal
location and applies action sequence in an open-loop.

Direct control: This baseline moves the target object toward goal location
without considering collision avoidance and recomputes the action in closed-loop.
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Fig. 6. Collision rate of proposed RMPC controller on RC-car robot platform for
successful trajectories where target object is pushed close to the goal location on held
out test set compared to prior works. (higher recall in lower collision rate is better).

Comparison results are summarized in Figures 5 and 6 and show that our
proposed RMPC method outperforms all of the baselines and experiences less
number of collisions during the trails. Hence RMPC obtains higher recall at lower
collision ratios.

4.3 Results on Real-World

In all real experiments we capture the scene point cloud using a depth camera.
Given the point cloud of a scene, our 3D object detection produces the 3D
bounding boxes around each object with their 3D poses as well as category labels
from which we can recompose the scene in the physics simulation. Figure 3 depicts
several examples of the recomposed real scene in the 3D simulator. As can be
seen, our scene recomposition produces simulated scenes that are identical to the
real world in terms of object scene arrangement, various object categories, and
their poses. Also, our scene recomposition is robust to a high amount of clutter
and occlusion in the scene.

We quantitatively compare our proposed RMPC with RMP which we observed
to be the strongest baseline in Section 4.2. We evaluate the performance by
computing the percentage of non-collision push actions in different trials. We
evaluate the performance in 32 different real scene arrangements and obtained the
average collision rate of 17.9% for RMPC and 35.4% average collision for RMP.
Figure 4 shows the example trajectories of real RC-car pushing tasks in three
different scenarios. As Figure 4 shows, our proposed RMPC method produces a
closed-loop sequence to successful actions and pushes the controllable object to
the goal location(shown by green dot) without colliding to with obstacles in the
scene where pushing to a goal location could be accomplished without a collision
event.
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5 Conclusion

Solving for the parameters of a second order dynamic system controller is challeng-
ing when the task involves objects of various properties and complex manipulation
under high uncertainty specially in nonprehensile settings. In this paper, we pro-
pose a Real-to-Sim approach for analysing the reward of action trajectory in
simulation and estimating the parameters of a second order dynamic system
controller for nonprehensile manipulation task. With our controller, we produce
a closed-loop reactive motion policy. We consider the complex task of pushing
objects on a surface in a complex environment with high uncertainty and demon-
strate the efficiency of our controller by comparing it to the prior works on a set
of nonprehensile manipulation tasks in simulation and real-world RC-car robot
platform.
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