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Abstract. Deep neural networks have recently advanced the state-of-
the-art in image compression and surpassed many traditional compres-
sion algorithms. The training of such networks involves carefully trading
off entropy of the latent representation against reconstruction quality.
The term quality crucially depends on the observer of the images which,
in the vast majority of literature, is assumed to be human. In this paper,
we aim to go beyond this notion of compression quality and look at hu-
man visual perception and image classification simultaneously. To that
end, we use a family of loss functions that allows to optimize deep image
compression depending on the observer and to interpolate between hu-
man perceived visual quality and classification accuracy, enabling a more
unified view on image compression. Our extensive experiments show that
using perceptual loss functions to train a compression system preserves
classification accuracy much better than traditional codecs such as BPG
without requiring retraining of classifiers on compressed images. For ex-
ample, compressing ImageNet to 0.25 bpp reduces Inception-ResNet clas-
sification accuracy by only 2%. At the same time, when using a human
friendly loss function, the same compression system achieves competitive
performance in terms of MS-SSIM. By combining these two objective
functions, we show that there is a pronounced trade-off in compression
quality between the human visual system and classification accuracy.

1 Introduction

Image compression algorithms aim at finding representations of images that use
as little storage — measured in bits — as possible. Opposed to lossless image
compression, where the goal is to achieve a high compression rate while requiring
perfect reconstruction, lossy image compression enables even higher compression
rates by allowing for a loss in reconstruction quality. Recently, image compres-
sion based on deep neural networks (DNNs) has achieved remarkable results in
both lossless [33] and lossy image compression [2J432I354T143], outperforming
many traditional codecs. One distinct advantage of such methods is their flex-
ibility with regards to the term reconstruction quality which crucially depends
on the observer of the compressed images. Previous research in lossy image
compression expressed quality largely in terms of human visual perception and
optimized for the human visual system (HVS), using distortion measures such as
multiscale structural similarity [47] (MS-SSIM) or mean squared error (MSE) as
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Fig. 1. Accuracy evaluated on ImageNet-1K with off-the-shelf Inception-ResNet-V2.
MS-SSIM on Kodak. Both datasets are compressed at ~0.25 bpp with different meth-
ods. Our Classification optimized system induces very low loss in classification accuracy
at high compression rates, compared to human optimized approaches.

training objectives. However, due to recent advances in computer vision systems,
increasingly more images are observed solely by machines and bypass humans.
Consequently, a natural question that arises is whether or not there exists a re-
lation between quality perceived by humans and quality perceived by computer
vision systems, and if so, how can we trade off quality between different types of
observers? In other words, is a compression system optimized for the human ob-
server also optimal for machines? We investigate these questions by specifically
looking at classification of natural images as one of the most well studied tasks in
computer vision. The training of modern classifiers is typically a costly and time-
consuming undertaking and parameters of the best performing classifiers are of-
ten publicly available. With that in mind, we are interested in a compression
system that generalizes well in the following sense. Firstly, we want to compress
images such that no retraining of classifiers on compressed images is required.
Secondly, the compression system should be agnostic to classifier architectures.
Thirdly, it should also generalize well to other visual tasks such as fine-grained
visual categorization of natural images. Together, these generalization require-
ments encourage using publicly available, pretrained classifiers on compressed
images from the same domain or on related tasks where classifiers were obtained
with transfer learning. Our method for classification oriented compression relies
on a feature reconstruction loss using deep features extracted from the hidden
layers of a convolutional neural network trained for image classification. This
type of loss function has been used in the context of super-resolution [7I2TI27],
style-transfer [I5J21] and variational autoencoders [12] with remarkable success.
In order to optimize for human visual perception, we make use of MS-SSIM as
a measure of quality perceived by humans, since it has been reported to cor-
relate better with the HVS than MSE. Finally, the convex combination of the
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two objectives allows to investigate the trade-off between between human visual
perception and classification in the context of image compression. In summary,
the contributions of our work are threefold:

— We show that training deep image compression with a perceptual loss function
preserves classification accuracy much better than human optimized compres-
sion systems. In addition, our experiments show that (1) we do not have
to retrain classifiers on compressed images in order to preserve accuracy on
highly compressed images, and (2) using VGG-based feature reconstruction
loss generalizes to other models, indicating that deep CNN features are shared
between CNN architectures.

— By looking at the convex combination between human and classification-
friendly loss, we present a simple way to trade off compression quality in
terms of human perception against image classification. Since we only rely
on the training objective, our method can be integrated to any learned lossy
image compression system.

— Our extensive experimental study indicates that there exists a pronounced
trade-off between compression quality perceived by the human observer and
classification accuracy. We show how improved compression quality for the
human observer comes at the cost of degraded classification accuracy, and
vice versa.

We emphasize that the contribution of this work is not presenting a new type of
loss function nor in a new deep compression architecture. Rather, we make us
of existing techniques in order to present a method to trading off compression
quality depending on the observer and to show that it is possible to explicitly
optimize compression for subsequent classification.

2 Related work

Deep image compression. Image compression using DNNs has recently become
an active area of research. The most popular types of architectures used for
image compression are based on autoencoders [2J4I32/3541] and recurrent neural
networks [22[42I[43] (RNNs). Typically, the networks are trained in an end-to-end
manner to minimize a pixel-wise notion of distortion such as MSE, MS-SSIM or
L1-distance between original and decoded image.

Compression for computer vision. Image compression in combination with other
computer vision tasks has been studied in a number of recent works. Liu et al. [29)
propose an image compression framework based on JPEG that is favorable to
DNN classifiers. Also starting from an engineered codec, Liu et al. [30] propose
a 3D image compression framework based on JPEG2000 which is tailored to
segmentation of 3-D medical images. Both works differ from ours in that we
look at learned image compression, rather than modifying an engineered one. A
few examples exist in the literature, where a classifier is learned from features
extracted from the encoded representations. Gueguen et al. [I7] train a modified
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ResNet-50 directly on the blockwise discrete cosine transform coefficients from
the middle of the JPEG codec. Torfason et al. [44] make use of the compres-
sive autoencoder proposed in [41I] and train neural networks for classification
and segmentation on the latent (quantized) representations and on the decoded
images. These works stand orthogonal to ours in that we do not allow training
on compressed versions of images. Rather, we train the compression algorithm
such that it maintains information relevant for subsequent classification, keep-
ing the classifiers fixed. We furthermore focus on agnosticity to architectures of
inference algorithms. Finally, since compression artifacts typically compromise
the performance of classifiers, Dodge and Karam [I1] study the effect of JPEG
compression on image classification with neural networks.

Feature reconstruction loss. This class of similarity functions makes use of deep
features extracted from convolutional neural networks. Recent advances in gen-
erative modelling have shown that using this type of loss functions, high quality
images can be generated and have been applied to a variety of tasks. Gatys et
al. [T4J15] apply the idea to style transfer and texture synthesis, while Johnson et
al. [21] and Bruna et al. [7] achieve remarkable results in super resolution [211/7]
and style transfer [21]. Ledig et al. |[27] further develop the idea and enhance the
CNN feature loss with adversarial training to achieve state-of-the-art results in
single image super resolution. In the image compression domain, steps in this
direction have also been made. Agustsson et al. [3], Santurkar et al. [37] and Liu
et al. [28] enhance pixel-wise distortion and adversarial training with a feature
reconstruction loss. Furthermore, Chinen et al. [8] and Zhang et al. [48] both pro-
pose a similarity metric based on deep features extracted from VGG-16 trained
for image classification. These works have in common that their focus is on the
human observer, while we exploit properties of feature reconstruction loss in the
context of compression geared towards subsequent image classification. Feature
reconstructions loss has also been used in the context of compression artifact
removal. Galteri et al. [I3] train a generative adversarial network in combination
with a VGG-based perceptual loss function to remove compression artifacts in
images. It is shown that this can significantly increase the quality of compressed
images in terms of MS-SSIM and in terms of object detection accuracy. However,
contrary to our work, no clear trade-off between the human observer and image
classification is investigated.

3 Method

In this section, we outline our approach to compressing images for human vi-
sual perception, classification accuracy and the interpolation between the two.
Throughout this paper we adopt the compression architecture proposed by Tode-
rici et al. [43], based on recurrent neural networks. We emphasize that we only
focus on the objective functions to account for different types of observers.

Compression framework. Let X C R? denote a set of training images, Z C 7Z the
quantization levels and d: RY x R? — R a notion of distortion between images.
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Our goal is to find a compression system consisting of an encoder E: R? — R™
that maps input images x to their latent representation z = E(x), a quantizer
q: R™ — Z™ that discretizes z to 2 = q(z), and a decoder D: Z™ — R% that
maps the quantized representation back to image space, X = D(2z). The goal
is then to minimize the rate-distortion trade-off over the training set X, i.e.
for 3 > 0, we want to minimize ), d(x, X) 4+ 8 H(Z), where H denotes the
entropy. As a compression architecture, we adopt the RNN-based model pro-
posed in [43] with gated recurrent units (GRUs), allowing for variable bitrates.
An input image x is passed through the encoder and quantizer, mapping the
latent codes stochastically to Z2™ = {—1,+1}™. The quantized representation
is subsequently decoded, yielding an estimate of the original image. This is re-
peated with the residual error fed to the encoder to obtain an estimate at the
next bitrate, using information from the hidden states of the previous itera-
tions. Formally, a single iteration at unrolling step ¢ > 1, can be represented
as Xy = X¢—1 + Di(Q(E¢(ry))) with Xg = 0 and r; = x and where F; and Dy
are encoder and decoder carrying information from the previous unrolling steps.
Finally, we remark that, since Z contains a finite number of quantization levels,
we set 5 = 0 in the training objective.

Optimizing for human visual perception. In order to optimize the compression
system for the human observer, we choose a measure of distortion that approxi-
mately models human visual perception. The multiscale structural similarity in-
dex (MS-SSIM) [47] is based on the assumption that the human eye is adapted
for extracting structural information from images and incorporates image de-
tails at multiple resolutions. It is furthermore reported to correlate better with
human visual perception than MSE. Since MS-SSIM is differentiable, we follow
[22132I35] and minimize directly dgy(x, %) = 1 — MS-SSIM(x, %X). We refer to
compression optimized with dg as RNN-H. An alternative approach would be
to use other, human-centric distortion metrics such as LPIPS [48] or the ap-
proach proposed in [8]. However, as these approaches are based on CNNs they
bear the additional challenge of dealing with checkerboard-like artifacts [34].

Optimizing for classification. Suppose we are given a CNN classifier f trained
on a set of images and labels (X”,)’) and corresponding training and validation
splits (XY, gins Virain) and (X!, V! ). When we optimize compression for classi-
fication accuracy, we are interested in finding an encoder, quantizer and decoder
such that the accuracy evaluated on the decoded validation set D(g¢(E(X],;)))
is maintained as well as possible, without further retraining the classifier on
decoded images. Formally, we wish to maximize ),/ l {f(x) = f(X)}. We
are thus not interested in matching decoded and originzﬁaimages on a pixel-wise
basis, but rather on preserving features which are relevant for subsequent classi-
fication. Image classification is a task which is typically invariant to translations
and local deformations (see e.g. [631]), which motivates the use of an objective
function with similar properties. For example, using a pixel-wise distortion, such
as MSE, which is not invariant to such deformations would be a suboptimal
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choice. Furthermore, minimizing MSE encourages the generator to produce im-
ages that are pixel-wise averages of plausible solutions [12], resulting in overly
smooth images. In other words, high frequency information such as textures will
tend to get lost in the compression process. While this is less problematic for the
HVS, which is more susceptible to low frequency changes, CNNs are sensitive to
any change in frequency [29].

Features learned by convolutional neural networks [26] for image classifica-
tion provide a promising alternative. The intuition is that, if such features are
maintained in the compression process, then the compressed representations are
encouraged to encode information relevant to classification rather than to the
human observer. Moreover, it is known that CNNs provide stability to small
geometric deformations and translations, thanks to rectification and pooling
units [6]. This is beneficial for our purpose, since we do not want to put too
much emphasis on such deformations as they do not affect classification. Fi-
nally, feature reconstruction loss typically leads to high frequency artifacts ([12]
and references therein) and checkerboard patterns [34]. While this harms hu-
man perceived visual quality, our experiments indicate that this is not the case
for classification. These considerations make distortion measures based on CNN
features promising candidates for classification oriented image compression.

In order to define a distortion measure that incorporates these properties,
we fix a CNN classifier f; trained on a dataset (X", V). Denote by ¢; the
responses of the i-th convolutional layer after activation and let Z be a set of
such layers. Note that Z is not required to include all layers. We then define the
distortion measure associated with the loss network f; and layers Z to be MSE
in feature space

do,7(x, %) = Y villds(x) — ¢:(%)|3, 1)

=

where 7; 1= (H; x W; x C;)~% and H;, W;, C; represent the spatial dimensions
of the corresponding layer. Note that we do not restrict the loss network to
be trained on the same dataset as the compression system or the classifier f,
however we do require that X" N X] , = &. Furthermore, the classifier f might
have a different underlying architecture than the loss network fr. This formula-
tion allows to investigate the generalizability of the compression system to new
datasets and CNN architectures. We refer to compression optimized with d¢,
as RNN-C.

From human visual perception to classification. In a scenario where images are
consumed by both humans and classifiers, we would like to be able to trade off
reconstruction quality between the two observers. In other words, we want to
have a compressed representation of an image that contains features relevant
for classification and looks visually pleasing for the human observer. At the
same time, this enables us to investigate the relation between human visual
perception and classification accuracy. For that purpose, we consider the convex
combination between distortions dg and d¢, 7

do,z(x, %) = (1 —a) - Ag - du(x, X) + o - deo, z(x, %) (2)



Observer Dependent Lossy Image Compression 7

P Classification optimized

0.125 bpp RNN-C, 0.125 bpp

(%

,0.125 bpp

v

original RNN-H, 0.125 bpp RNN- 1, 0.125 bpp

RNN:% RNN:_?,
Fig. 2. Sample image from the Stanford Dogs dataset. RNN-H results in smoother and
blurrier images, RNN-C on the other hand produces sharp images but suffers from

checkerboard-like artifacts stemming from the CNN based loss function.

and control the trade-off with the parameter « € [0, 1]. The parameter Ay is a
scaling parameter which keeps the two losses on the same magnitude and is set
to 5,000. We refer to compression optimized with do, 7 as RNN-a.

4 Experiments

In this section we experimentally validate our approach to trading off compres-
sion quality between human visual perception and classification accuracy, mak-
ing use of the proposed family of loss functions. All models are implemented in
Python using the Tensorflow [I] libraryEl

Image compression. We use the RNN compression architecture proposed by
Toderici et al. [43] with GRUs and the additive reconstruction framework. Our
implementation differs from the original version in two aspects. Firstly, during
training, we feed as input the full resolution images, rather than 32x32 image
patches. And secondly, instead of optimizing the L;-distance in image space,
we use the family of loss functions as training objective. Furthermore, we
do not use the lossless entropy coding scheme proposed in their original work.
While this would likely result in reduced bitrates, and thereby further improve
our results, we omit this in order to reduce complexity and focus exclusively on
the distortion during training. If not stated otherwise, we train the networks for
8 unrolling steps, yielding rates between 0.125 and 1.0 bpp. As training data
X, we use the training split of the ILSVRC-2012 [36] dataset, commonly known
as ImageNet-1K. We preprocess the images by resizing such that the smallest
side equals 256 pixels and aspects are preserved using bilinear interpolation.
During training, we take random crops of size 224x224 and randomly flip them
horizontally. During validation, we use the central crop of size 224x224. We
follow [32] and normalize with a mean and variance obtained from a subset of
the training set. We train all our networks using the Adam optimizer [24] for
three epochs with the learning rate set to 4e-4 and minibatches of size four. All
models are trained on eight Nvidia Titan X GPUs with 12GB RAM.

! The source code is available at https://github.com/DS3Lab/odlc
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Measures of distortion. We train the compression networks using the loss func-
tion defined in equation and use VGG-16 trained on the ImageNet-1K train-
ing split as our loss network fr,. Preliminary experiments have shown that choos-
ing Z ={¢1.1, 5.1} in , where ¢; ; denotes the j-th convolutional layer after
activation in the i-th block of VGG-16, performed best. Including the entire set
of convolutions or only the first or last layer did not yield any improvements. We
provide detailed plots to compare the different loss compositions with respect
to accuracy in the supplementary materials. The weights of the loss network are
frozen and left unchanged during training. We experiment with different values
for the parameter «, starting the training each time from scratch. Namely, in or-
der to optimize for human visual perception, we set o = 0, while for classification
oriented compression, we set aw = 1. To investigate the trade-off between human
vision and classification, we train with o € {i, %, %}, also starting training from
scratch each time.

Comparison with other methods. We compare our approach to the traditional
compression algorithms JPEG [46], WebP [16] and BPG [5] which achieves state-
of-the-art performance in HVS oriented compression. Following [32I35], BPG is
used in the non-default 4:4:4 chroma format. Finally, we also compare against
the state-of-the-art learned compression method presented in Mentzer et al. [32],
using their publicly available weights and code. Since the available weights do
not compress images below 0.3 bpp, we train two models with the same hyperpa-
rameters but different number of bottleneck channels to achieve lower bitrates.

Datasets. We evaluate our approach on four publicly available datasets. For
classification we use the ImageNet-1K dataset [30], as well as two datasets used
for fine-grained categorization, CUB-200-2011 [45] and Stanford Dogs [23]. In
order to evaluate the performance in terms of human visual perception we use
the Kodak Photo CD dataset [25] and the ImageNet-1K validation split.

CNN architectures. On ImageNet-1K, we use DenseNet-121 [20], Inception-
ResNet-V2 [39], Inception-V3 [40], MobileNet-V1 [19], ResNet-50 [I8], Xcep-
tion [9] and VGG-16 [38] for inference and use the weights provided by the
Keras Library [10]. For fine-grained categorization on CUB-200-2011 and Stan-
ford Dogs, we use Inception-V3, Inception-ResNet-V2, MobileNet-V1, ResNet-50
and VGG-16. To obtain the classifiers, we use ImageNet pre-trained networks
and fine-tune all layers on the original uncompressed training split.

Evaluating classification accuracy. In order to compare the different compression
algorithms with regard to classification accuracy, we evaluate a collection of CNN
architectures on datasets compressed with different algorithms and at different
bitrates. Note that all classifiers are trained on the uncompressed respective
training datasets, without retraining on decoded data. The evaluation procedure
is as follows. Since generally, the images do not have the same resolution, we
resize them such that the smaller side equals Scomp and aspects are preserved.
We then take the central crop of size Scomp X Scomp yielding square images. After
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this step, given a compression algorithm, we encode the images for a predefined
grid of quality parameters and compute the bpp values for each image and
quality parameter. For each quality level, we subsequently take the average over
the entire validation set, yielding the final bpp values. Finally, we decode and
take the central crop of size Si,f X Siny of the decoded image, which is then fed
to the classifier. This results in a set of (bpp, accuracy) points for each classifier
and compression method. For CNNs that expect inputs of size S;,r = 299 we
set Scomp = 336 and for those with S, = 224, we set Scomp = 256.

FEvaluating human visual perception. The procedure to compare the compres-
sion methods for human perceived visual quality is as follows. To account for
the variable resolution on ImageNet-1K, we resize each image with bilinear inter-
polation such that the smallest side equals 256 pixels and aspects are preserved.
We then take the central crop of size 256 x256. Since the Kodak images are all of
equal resolution, we skip this first resizing step and keep the original resolution.
We then compress the images using a predefined grid of quality parameters and
compute their bpp values which are averaged over the validation set. Finally,
we compute the MS-SSIM scores between decoded and original (resized) image.
This yields a set of (bpp, MS-SSIM) points for each compression method.

4.1 Results

We start by investigating the trade-off between human perception and classifica-
tion accuracy using compression trained with an increasingly more classification
friendly loss. We then look at compression in terms of classification accuracy,
followed by our results on human perception.

From human visual perception to classification. In order to investigate the re-
lation between compression quality perceived by humans in terms of MS-SSIM,
and by CNN classifiers, we train the compression networks with loss functions
that interpolate between human friendly and classification friendly loss, i.e. for
values of « in {0, %, %, %, 1}. This trade-off can be seen qualitatively in Fig-
ure [2] Optimizing for MS-SSIM, results in images that appear smoother and
more blurry. Classification optimized compression on the other hand results in
sharper images but suffers from checkerboard-like artifacts. This type of degrada-
tion is a known issue for feature visualization and super resolution (see e.g. [34])
and — in our case — stems from the convolution based loss function which in-
curs artifacts in gradients. In order to quantitatively investigate the trade-off,
we visualize the relation in Figure [3] We plot MS-SSIM on Kodak (left axis) and
ImageNet-1K validation accuracy (right axis) against the tradeoff parameter o
corresponding to RNN compression trained with different loss functions. The
Figures indicate that we can indeed trade off accuracy against MS-SSIM by op-
timizing compression with our family of loss functions. Interestingly, we observe
that by increasing the trade-off parameter o from 0 to 0.25, we substantially
increase accuracy while the reduction in MS-SSIM is relatively small. The same
holds for the other direction. Finally, we observe that the trade-off is much more
pronounced in the low bitrate regime.
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Fig. 3. MS-SSIM evaluated on Kodak (left axis, grey), validation accuracy evaluated on
ImageNet-1k (right axis, blue). As « increases, MS-SSIM decreases, while validation
accuracy increases. The trade-off is especially pronounced for the low bitrates and
DenseNet-121 is in general more sensitive to compression than Inception-ResNet-V2.

ImageNet classification. Table [1] shows the classification accuracies for a wider
collection of CNN architectures. We see that our RNN-C outperforms both the
traditional codecs BPG, WebP and JPEG as well as our RNN-H and the deep
image compression method proposed in [32], across all architectures and bitrates
considered. In the case of the loss network VGG-16 this is to be expected, since
we explicitly train the compression network to produce images whose VGG-
features — which are fed to the fully connected layers for classification — match
the ones from their uncompressed version. Interestingly however, we see that
RNN-C generalizes well to architectures different from the loss network and
maintains the accuracy remarkably well, indicating that hidden representations
are shared among CNN architectures. It is again noticeable that the advantage
of RNN-C is much more pronounced for low bitrates.

Fine-grained visual categorization. In order to explore the generalization prop-
erties of our compression system to new tasks, we evaluate our method on two
well known datasets for fine-grained visual categorization, namely Stanford Dogs
and CUB-200-2011. We emphasize that the compression system is trained on
the ImageNet-1K training split. Figures and indicate that RNN-C out-
performs both the traditional codecs, RNN-H compression and the approach
presented in [32] in terms of preserved classification accuracy with Inception-
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Table 1. Validation accuracy on ImageNet-1K. Our RNN-C compression consistently
outperforms all other methods across bitrates and architectures.

ImageNet-1K Validation Accuracy
224x224 input 299x299 input
bpp DenseNet-121 MobileNet ResNet-50 VGG—ldﬂ bpp Inception-V3 Xception
Low Bitrates (~0.13 bpp)

RNN-C 0.125 0.5914 0.4903 0.6092 0.6009 0.125 0.6691 0.6815
RNN-H 0.125 0.4109 0.3221 0.4309 0.3797 0.125 0.5550 0.5722
Mentzer et al. [32] 0.142 0.4744 0.3774 0.4931 0.4387 0.140 0.6069 0.6269
BPG 0.157 0.4661 0.3421 0.4711 0.4448 0.132 0.5750 0.6050
JPEG 0.136 0.0480 0.0493 0.0426 0.0320 0.113 0.2675 0.2166
Medium Bitrates (~0.65 bpp)
RNN-C 0.625 0.7252 0.6256 0.7246 0.6998 0.625 0.7678 0.7787
RNN-H 0.625 0.6709 0.5688 0.6744 0.6450 0.625 0.7434 0.7543
Mentzer et al. [32] 0.652 0.6842 0.5909 0.6975 0.6670 0.648 0.7567 0.7652
BPG 0.725 0.6857 0.5834 0.6894 0.6634 0.581 0.7377 0.7523
WebP 0.589 0.6306 0.5263 0.6323 0.6247 0.602 0.7268 0.7429
JPEG 0.582 0.6166 0.5111 0.6333 0.6365 0.686 0.7390 0.7476
High Bitrates (~1.0 bpp)
RNN-C 1.000 0.7303 0.6347 0.7316 0.7037 1.000 0.773 0.7840
RNN-H 1.000 0.6998 0.5984 0.7018 0.6732 1.000 0.7631 0.7728
Mentzer et al. [32] 1.037 0.7076 0.6183 0.7152 0.6841 1.034 0.7667 0.7767
BPG 1.048 0.7085 0.6151 0.7168 0.6841 1.066 0.7618 0.7756
WebP 0.997 0.6930 0.6050 0.7039 0.6829 1.055 0.7589 0.7699
JPEG 1.087 0.6808 0.5865 0.6963 0.6918 0.962 0.7517 0.7622
Original - 0.7453 0.6590 0.7465 0.7088 - 0.7786 0.7907

® Loss network used to train RNN-C compression.
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MS-SSIM on Kodak is shown in (¢), indicating that our RNN-H is comptetitive to the
state-of-the-art while RNN-C is comparable to JPEG. In each figure, RNN compression
is trained from scratch on ImageNet-1K.
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ResNet-V2 on both datasets. Similarly to ImageNet-1K classification, we see
that the difference is especially pronounced below 0.5 bpp.

Human visual perception. Figure shows that RNN-H outperforms RNN-
C on Kodak across bitrates. In comparison to neural compression from [32],
RNN-H performs competitive, although worse for the lowest bitrate. Comparing
our method against the traditional codecs, RNN-H slightly outperforms BPG
for bitrates above 0.2 bpp. Additionally, RNN-H clearly outperforms WebP and
JPEG, while RNN-C performs competitive to JPEG.

5 Discussion

In this paper we investigate the trade-off in learned image compression with
RNNs [43] between human visual perception and image classification. To that
end, we use a family of loss functions that enables us to either optimize com-
pression for the human observer, or towards subsequent image classification. Our
experiments show that when using the human friendly loss, RNN compression
performs competitive to a state-of-the-art learned compression method [32] and
to the traditional codec BPG [5] in terms of MS-SSIM. JPEG and WebP perform
consistently worse than our approach. We use MS-SSIM as a model for image
similarity perceived by humans which, although being a widely adopted measure
of distortion, is only an approximation to a true model of the human visual sys-
tem. Our classification friendly loss, based on features extracted from VGG-16,
induces a compression system which by a large margin outperforms both the the
other approaches in terms of preserved classification accuracy. Our experiments
furthermore indicate that our approach is agnostic to the CNN architecture
used for classification and does not require the classifiers to be retrained on
compressed images. This suggests that we can indeed explicitly optimize image
compression for subsequent classification. We observe a clear trade-off between
quality perceived by the human visual system and classification accuracy, mean-
ing that, for a fixed bitrate, an increase in accuracy always comes at the cost of
degraded quality for the human observer, and vice versa. Across classifiers, this
trade-off is much more pronounced for bitrates below 0.5 bpp. Finally, we find
that by moving the loss function only marginally towards classification, we can
substantially increase the preserved accuracy while incurring only a minor re-
duction in MS-SSIM. This improves compression in a scenario where images are
consumed by humans and classifiers simultaneously and allows a user to trade
off reconstruction quality accordingly.

An interesting line of future work could include investigating other types of
distortion measures used for the human oriented training loss, for example met-
rics that are based on CNNs which have been reported to correlate better with
human perceptual similarity. Additionally, while classification is one of the most
basic computer vision tasks, it would be interesting to explore whether the ap-
proach presented here also generalizes to other tasks such as image sementation
and object detection.
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A Choosing Layers for Reconstruction

As discussed in the main part, we conducted a series of preliminary experiments
to find a choice of layers for the feature reconstruction loss. Since CNNs extract
information at different levels of abstraction with different meaning in image
space, the performance of a compression system trained to reconstruct features
depends on the choice of layers. Recall that we use VGG-16 as loss network.
Figure [5] shows that when the goal is to train a compression system that gen-
eralizes across CNN architectures, the choice of layers that combines an early
and a deep layer performs best across all bitrates. We suspect the reason for
this observation is that when we only choose a deep layer or all layers, then the
compression system overfits to the loss network and hence does not generalize
to other architectures. If the goal is to mantain classification accuracy only for
the loss network, Figure shows that performance increases with depth and
it is not necessary to include an early layer.
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Fig. 5. Validation accuracy on ImageNet-1K for different layers in the feature recon-
struction loss. Zy corresponds to the full set of layers. VGG-16 is the loss network.
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B MS-SSIM and Accuracy Plots

Figure [6] show the MS-SSIM scores on the validation set of ImageNet-1K. It
can be seen that BPG outperforms RNN-H with respect to MS-SSIM, especially
for the lowest bitrates. RNN-H clearly outperforms WebP and JPEG, while
RNN-C performs competitive to JPEG. Figure [7] visualizes our findings from
the main part on the ImageNet-1K validation set. We see that, across classifiers
and bitrates, RNN-C performs best in terms of preserved classification accuracy.
Figures[8|and [9] indicate the same trend for the fine grained visual categorization

experiments.
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Fig. 6. MS-SSIM on ImageNet-1K
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C Success and Failure Cases

(d) RNN-H

Fig. 10. Images (compressed to ~ 0.1bpp) where our methods are better than BPG
in terms of classification (left) and MS-SSIM (right). On the left, Inception-ResNet
predicts “Partridge” on the original and RNN-C image and “Black Grouse” on the
BPG compressed image. On the right, BPG achieves 0.88 MS-SSIM and RNN-H 0.89.

" "u
I
1l T

cd B

(a) BPG () RNN-C (c) BPG (d) RNN-H

Fig. 11. Images (compressed to ~ 0.1bpp) where our methods are worse than BPG in
terms of classification (left) and MS-SSIM (right). Inception-ResNet predicts “Croquet
Ball” on the original and BPG image and “Abacus” on the RNN-C compressed image.
In the right, BPG achieves 0.99 MS-SSIM and RNN-H 0.98.
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D Visual Examples

On the following pages, we show visual examples from each of our validation
sets compressed at low bitrates. We note that all bitrates are computed without
counting the header information. We generally observe that RNN-C compression
exhibits high frequency artifacts noticeable to the human eye, while the MS-SSIM
optimized RNN-H and Mentzer et al. [32] results in blurring (e.g. Figures
and . We also show each example compressed with RNN-« and see that
this exhibits both types of artifacts although less noticeable. This illustrates the
trade off between quality for the human observer and classification accuracy, as
discussed in the main part of this paper. BPG compression typically has blocking
artifacts at these compression rates as can be seen most prominently in Figure

[17(e)
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(a) Original b) Mentzer et al. [32], (¢) BPG, 0.131 bpp
0.153 bpp

(d) RNN-H, 0.125 bpp (e) RNN-1, 0.125 bpp (f) RNN-C, 0.125 bpp

Fig.12. Our method compared to BPG and Mentzer et al. [32] on a sample image
from ImageNet-1K.
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(e) BPG, 0.134 bpp (f) RNN-C, 0.125 bpp

Fig. 13. Our method compared to BPG and Mentzer et al. [32] on a sample image
from Stanford Dogs.
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(e) BPG, 0.118 bpp (f) RNN-C, 0.125 bpp

Fig. 14. Our method compared to BPG and Mentzer et al. [32] on a sample image
from CUB-200-2011.
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(e) BPG, 0.141 bpp

Fig.15. Our method compared to BPG and Mentzer et al. [32] on the 8th Kodak
image.
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(a) Original (b) Mentzer et al. [32], (¢) BPG, 0.131 bpp
0.125 bpp

=

d) RNN-H, 0.125 bpp ¢) RNN-1, 0.125 bpp f) RNN-C, 0.125 bpp
2

Fig. 16. Our method compared to BPG and Mentzer et al. [32] on the 10th Kodak
image.
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(c) Mentzer et al. [32], 0.195 bpp (d) RNN-1, 0.125 bpp

— -

(e) BPG, 0.119 bpp (f) RNN-C, 0.125 bpp

Fig.17. Our method compared to BPG and Mentzer et al. [32] on the 13th Kodak
image.
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