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Abstract. With the success of deep learning methods in analyzing ac-
tivities in videos, more attention has recently been focused towards an-
ticipating future activities. However, most of the work on anticipation
either analyzes a partially observed activity or predicts the next action
class. Recently, new approaches have been proposed to extend the pre-
diction horizon up to several minutes in the future and that anticipate a
sequence of future activities including their durations. While these works
decouple the semantic interpretation of the observed sequence from the
anticipation task, we propose a framework for anticipating future activ-
ities directly from the features of the observed frames and train it in
an end-to-end fashion. Furthermore, we introduce a cycle consistency
loss over time by predicting the past activities given the predicted fu-
ture. Our framework achieves state-of-the-art results on two datasets:
the Breakfast dataset and 50Salads.

1 Introduction

Humans spend a significant time of their life thinking about the future. Whether
thinking about their future dream job, or planning for the next research project.
Even unconsciously, people tend to anticipate future trajectories of moving
agents in the surrounding environment and the activities that they will be doing
in the near future. Such anticipation capability is considered a sign of intelligence
and an important factor in determining how we interact with the environment
and how we make decisions.

Since anticipation is an important intrinsic capability of human beings, re-
searchers have recently tried to model this capability and embed it in intelligent
and robotic systems. For example, several approaches have been proposed to
anticipate future trajectories of pedestrians [I8/4], or semantic segmentation of
future frames in video [255]. These approaches have many applications in au-
tonomous driving and navigation. Another line of research focuses on anticipat-
ing future activities [2IJT9044], which has potential applications in surveillance
and human-robot interaction.

While anticipating the next action a few seconds in the future has been
addressed in [44J46/TT], such short time horizon is insufficient for many appli-
cations. Service robots, for example, where a robot is continuously interacting
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Fig. 1. (Left) Overview of the proposed approach, which is trained end-to-end and
includes a cycle consistency module. (Right) Effect of the cycle consistency module.
Without the cycle consistency, the network anticipates actions that are plausible based
on the previous actions. However, in some cases an essential action is missing. In this
example pour oil. By using the cycle consistency, we enforce the network to verify if
all required actions have been done before. For the action fry pancake, pouring oil into
the pan is required and the cycle consistency resolves this issue.

with a human, require anticipating a longer time horizon, which rather includes
a sequence of future activities than only predicting the next action. By antic-
ipating longer in the future, such robots can plan ahead and accomplish their
tasks more efficiently. Recent approaches, therefore, focused on increasing the
prediction horizon up to several minutes and predict multiple action segments in
the future [BIT0JI6]. While these approaches successfully predict future activities
and their duration, they decouple the semantic interpretation of the observed
sequence from the anticipation task using a two-step approach.

Separating the understanding of the past and the anticipation of future has
several disadvantages. First, the model is not trained end-to-end, which means
that the approach for temporal action segmentation is not optimized for the an-
ticipation task. Second, if there are any mistakes in the temporal action segmen-
tation, these mistakes will be propagated and effect the anticipated activities.
Finally, the action labels do not represent all information in the observed video
that is relevant for anticipating the future. In contrast to these approaches, we
propose a sequence-to-sequence model that directly maps the sequence of ob-
served frames to a sequence of future activities and their duration. We then
cast the understanding of the past as an auxiliary task by proposing a recogni-
tion module, which consists of a temporal convolutional neural network and a
recognition loss, that is combined with the encoder.

Furthermore, as we humans can reason about the past given the future,
previous works only aim to predict the future, and it is intuitive that forcing the
network to predict the past as well is helpful. To this end, we propose a cycle
consistency module that predicts the past activities given the predicted future.
This module verifies if, for the predicted future actions, all required actions
have been done before as illustrated in Fig.[I} In this example, the actions pour
dough to pan and fry pancake are plausible given the previous actions, but the
action pour oil has been missed. The cycle consistency module then predicts
from the anticipated actions, the observed actions. Since pour dough to pan and
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fry pancake are the inputs for the cycle consistency module, it will predict all the
required preceding actions such as pour milk, stir dough and pour oil. However,
as pour oil is not part of the observations, the cycle consistency module will have
a high error, which steers the network to predict pour oil in the future actions.

Our contribution is thus three folded: First, we propose an end-to-end model
for anticipating a sequence of future activities and their durations. Second, we
show that the proposed recognition module improves the sequence-to-sequence
model. Third, we propose a cycle consistency module that verifies the predictions.

We evaluate our model on two datasets with untrimmed videos containing
many action segments: the Breakfast dataset [20] and 50Salads [41]. Our model
is able to predict the future activities and their duration accurately achieving
superior results compared to the state-of-the-art methods.

2 Related Work

Early action detection: The early action detection task tries to recognize an
ongoing activity given only a partial observation of that activity. An initial work
addressing this task by Ryoo [36] is based on a probabilistic formulation using
dynamic bag-of-words of spatio-temporal features. Hoai and De la Torre [14]
used a max-margin formulation. More recent approaches use recurrent neural
networks with special loss functions to encourage early activity detection [26J37].
In contrast to these approaches, we anticipate future activities without even any
partial observations.

Future prediction: Predicting the future has become one of the main research
topics in computer vision. Many approaches have been proposed to predict future
frames [30124], future human trajectories [I8/4], future human poses [15129/35],
image semantic segmentation [255], or even full sentences describing future
frames or steps in recipes [38)27]. However, low level representations like pixels of
frames or very high level natural language sentences cannot be used directly. A
complementary research direction is concentrated on anticipating activity labels.
Lan et al. [21] predicted future actions using hierarchical representations in a
max-margin framework. Koppula and Saxena [19] used a spatio-temporal graph
representation to encode the observed activities and then predict object affor-
dances, trajectories, and sub-activities. Instead of directly predicting the future
action labels, several approaches were proposed to predict future visual repre-
sentations and then a classifier is trained on top of the predicted representations
to predict the future labels [4412/4613934I11]. Predicting future representations
has also been used in the literature for unsupervised representations learning [40].
Other approaches use multi-task learning to predict the future activity and its
starting time [2831], or the future activity and its location [23/42]. Miech et
al. [32] modeled the transition probabilities between actions and combine it
with a predictive model to anticipate future action labels. There is a parallel
line of research addressing the anticipation task in egocentric videos [89]. How-
ever, these approaches are limited to very few seconds in the future. In contrast
to these approaches, we address the anticipation task for a longer time horizon.
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Recently, more effort has been dedicated to increase the anticipation horizon.
Several methods have been proposed to anticipate activities several minutes in
the future using RNNs [213], temporal convolutions with time-variable [16], or
memory networks [10]. While these approaches manage to anticipate activities
for a longer time horizon, their performance is limited. The approach of [10]
relies on the ground-truth action labels of the observations, whereas the meth-
ods in [23I16] follow a two-step approach. Ie. they first infer the activities in
the observed part, then anticipate the future activities with their corresponding
duration. These two steps are trained separately, which prevents the model from
utilizing the visual cues in the observed frames. In contrast to these approaches,
our model is trained in one step in an end-to-end fashion.

Cycle consistency: Cycle consistency has been widely used in computer vision. It
was used to learn dense correspondence [47], image-to-image translation [48], and
depth estimation [I3]. Recent approaches used cycle consistency in the temporal
dimension [7J45]. Dwibedi et al. [7] introduced an approach to learn representa-
tions using video alignment as a proxy task and cycle consistency for training.
In [I3], the appearance consistency between consecutive video frames is used to
learn representations that generalize to different tasks. Motivated by the suc-
cess of cycle consistency in various applications, we apply it as an additional
supervisory signal to predict the future activities.

3 The Anticipation Framework

Given a partially observed video with many activities, we want to predict all
the activities that will be happening in the remainder of that video with their
corresponding duration. Assuming that the observed part consists of t, frames

X1, = (x1,...,2+,) corresponding to n activities Ay, = (A1,...,Ay), our
goal is to predict the future activities A,+1.8n = (Ap+1, ..., An) and their cor-
responding duration £,11.8 = (lpt1,...,¢N), where N is the total number of

activities in that video. In contrast to the previous approaches that use only
the action labels of the observed frames for anticipating the future, we propose
to anticipate the future activities directly from the observed frames. First, we
propose a sequence-to-sequence model that maps the sequence of features from
the observations to a sequence of future activities and their duration. Then,
we introduce a cycle consistency module that predicts the past activities given
the predicted future. The motivation of this module is to force the sequence-to-
sequence module to encode all the relevant information in the observed frames
and verify if the predictions are plausible. Finally, we extend the sequence-to-
sequence model with a recognition module that generates discriminative features
that capture the relevant information for anticipating the future. An overview
of the proposed model is illustrated in Fig. 2| Our framework is hence trained
using an anticipation loss, a recognition loss, and a cycle consistency loss. In the
following sections, we describe in detail these modules.
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Fig. 2. Overview of the anticipation framework. The observed frames are passed
through a TCN-based recognition module which produces discriminative features for
the sequence-to-sequence model. The sequence-to-sequence model predicts the future
activities with their duration. In addition, we enforce cycle consistency over time by
predicting the past activities given the predicted future.

3.1 Sequence-to-Sequence Model

The sequence-to-sequence model maps the sequence of observed frames to a se-
quence of future activities and their duration. For this model, we use a recurrent
encoder-decoder architecture based on gated recurrent units (GRUs).
Recurrent Encoder. The purpose of the recurrent encoder is to encode the
observed frames in a single vector which will be used to decode the future ac-
tivities. Given the input features X, the recurrent encoder passes these features
through a single layer with a gated recurrent unit (GRU)

he = GRU (x4, hS_,), (1)

where 2 is the input feature for frame ¢, and h{_; is the hidden state at the pre-
vious time step. The hidden state at the last time step hf encodes the observed
frames and will be used as an initial state for the decoder.

Recurrent Decoder. Given the output of the encoder Af , the recurrent de-
coder predicts the future activities and their relative duration. The decoder also
consists of a single layer with a gated recurrent unit (GRU). The hidden state
at each step is updated using the GRU update rules

= GRU(Am-1, b, 1), (2)

where the input at each time step A,,_1 is the predicted activity label for the
previous step. At training time, the ground-truth label is used as input. Whereas
the predicted label is used during inference time. For the first time step, a special
start-of-sequence (SOS) symbol is used as input. Given the hidden state he, at
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each time step, the future activity label A,, and its relative duration ¢, are
predicted using a fully connected layer, i.e.

A, = Wahl +ba, (3)

b = Wihe, 4 by, (4)

where A,, is the predicted logits for the future activity, and 0,y is the predicted
duration in log space. To get the relative duration, we apply softmax over the
time steps

B olm

by = —

m Zk eek
The decoder keeps predicting future activity labels and the corresponding dura-
tion until a special end-of-sequence (EOS) symbol is predicted. As a loss function,

we use a combination of a cross entropy loss for the activity label and a mean
squared error (MSE) for the predicted relative duration

()

La=Lce+ LusE, (6)
1 N
Lep = N—_n Z —log(am,a), (7)

m=n+1

1 .
Lyuse = 5— > (U =), (3)

m=n+1

where L4 is the anticipation loss, @, 4 is the the predicted probability for the
ground truth activity label at step m, n is the number of observed action seg-
ments and N is the total number of action segments in the video.

Since the input to the encoder are frame-wise features which might be very
long, the output of the encoder hf might not be able to capture all the relevant
information. To alleviate this problem we combine the decoder with an attention
mechanism using a multi-head attention module [43]. Additional details are given
in the supplementary material.

3.2 Cycle Consistency

Since predicting the future from the past and the past from the future should be
consistent, we propose an additional cycle consistency loss. Given the predicted
future activities, we want to predict the past activities and their duration. This
requires the predicted future to be good enough to predict the past. The cycle
consistency loss has two benefits. First, it verifies if, for the predicted future
actions, the actions that have been previously observed are plausible. Second, it
encourages the recurrent decoder to keep the most important information of the
observed sequence until the end, instead of storing only the information of the
previous anticipated activity. In this way, a wrong prediction does not necessary
propagate since the observed sequence is kept in memory.
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The cycle consistency module is similar to the recurrent decoder and consists
of a single layer with GRU, however, it predicts the past instead of the future.
The hidden state of this GRU is initialized with the last hidden state of the
recurrent decoder and at each step the hidden state is updated as follows

he¥® = GRU(Apm_1, h2°)). 9)

m—1

Given the hidden state hSY¢ at step m, an activity label of the observations and
its relative duration are predicted using a fully connected layer. The loss function
is also similar to the recurrent decoder

ACcyc = ‘CCE + EMSE7 (10)
1 ¢ :
Lop=— > —log(im, a), (11)
m=1
J R )
EMSE - g (Zm - Em) 5 (12)
m=1

where L., is the cycle consistency loss, Lo and L5k are the cross entropy
loss and MSE loss applied on the past activity labels and their relative duration.

While the mapping from past to future can be multi-modal, this does not
limit the applicability of the cycle consistency module. Since the cycle consis-
tency module is conditioned on the predicted future, no matter what mode is
predicted, the cycle consistency makes sure it is plausible. This also applies to
the inverse mapping. As there is a path from the observed frames to the cycle
consistency module through the sequence-to-sequence model, there is no ambi-
guity in which past activities have been observed.

3.3 Recognition Module

In the sequence-to-sequence model, the input of the recurrent encoder are the
frame-wise features. However, directly passing the features to the encoder is sub-
optimal as the encoder might struggle to capture all the relevant information for
anticipating the future activities. As past activities provide a strong signal for
anticipating future activities, we use a recognition module that learns discrimi-
native features of the observed frames. These features will then serve as an input
for the sequence-to-sequence model to anticipate the future activities. Given the
success of temporal convolutional networks (TCNs) in analyzing activities in
videos [22[1], we use a similar network for our recognition module. Besides be-
ing a strong model for analyzing videos, TCNs are fully differentiable and can
be integrated in our framework without preventing end-to-end training. For our
module, we use a TCN similar to the one proposed in [I]. The TCN consists of
several layers of dilated 1D convolutions where the dilation factor is doubled at
each layer. The operations at each layer can be formally described as follows

Fy = ReLU (W1 * Fi_1 + by), (13)
Fy=F_q + Wy F + b, (14)
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where Fj is the output of layer [, * is the convolution operator, W; € R3*KxK
are the weights of the dilated convolutional filters with kernel size 3 and K is
the number of the filters, Wy € RYX XK are the weights of a 1 x 1 convolution,
and by, by € R¥ are bias vectors. The input of the first layer Fy is obtained by
applying a 1 X 1 convolution over the input features X.

The output of the last dilated convolutional layer serves as input to the
subsequent modules. To make sure that these features are discriminative enough,
we add a classification layer that predicts the action label at each observed frame

Y; = Softmaz(W f; +b), (15)

where Y; contains the class probabilities at time ¢, f,; € R¥ is the output of
the last dilated convolutional layer at time ¢, W € RE*K and b € R are the
weights and bias for the 1 x 1 convolutional layer, where C' is the number of
action classes. To train this module we use a cross entropy loss

to

1 -
Lr=—Y —log(j.c), (16)
to t=1
where 7 . is the predicted probability for the ground truth label c at time ¢, and
t, is the number of observed frames.

3.4 Loss Function

To train our framework, we sum up all the three mentioned losses
L= LA + ‘CR + Lcyca (17)

where L4 is the anticipation loss, L is the recognition loss, and L.y is the
cycle consistency loss.

4 Experiments

We evaluate the proposed model on two datasets: the Breakfast dataset [20] and
50Salads [41]. In all experiments, we report the average of three runs.

The Breakfast dataset is a collection of 1,712 videos with overall 66.7 hours
and roughly 3.6 million frames. Each video belongs to one out of ten breakfast
related activities, such as make tea or pancakes. The video frames are annotated
with fine-grained action labels like pour milk or fry egg. Overall, there are 48
different actions. On average, each video contains 6 action instances and is 2.3
minutes long. For evaluation, we use the standard 4 splits as proposed in [20]
and report the average.

The 50Salads dataset contains 50 videos showing people preparing different
kinds of salad. These videos are relatively long with an average of 6.4 minutes
and 20 action instances per video. The video frames are annotated with 17 fine-
grained action labels like cut tomato or peel cucumber. For evaluation, we use
five-fold cross-validation and report the average as in [41].

We follow the state-of-the-art evaluation protocol and report the mean over
classes (MoC) accuracy for different observation/prediction percentages [3/16].
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Table 1. Ablation study on the Breakfast dataset. Numbers represent mean over
classes (MoC) accuracy.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
S2S 23.22 20.92 20.10 20.05 26.43 24.38 24.13 23.38
S2S + TCN 14.52 13.55 13.15 12.70 14.83 14.11 13.61 13.01
S2S + TCN + Lg 24.72 22.43 21.70 21.77 28.35 26.29 25.01 24.47
S2S + TCN + Lr + Leye 25.16 22.73 22.22 22.01 28.07 26.25 25.12 24.81
S2S + TCN + Lr + Leye + attn.  25.88  23.42 22.42 21.54 29.66 27.37 25.58 25.20

Implementation Details. For the recognition module, we used a TCN with 10
layers and 64 filters in each layer. The number of units in the GRU cells is set to
512. For each training video, we generate two training examples with 20% and
30% observation percentage. The prediction percentage is always set to 50%.
All the models are trained for 80 epochs using Adam optimizer [I7]. We set the
learning rate to 0.001 and reduce it every 20 epochs with a factor of 0.8. For
both datasets, we extract I3D [6] features for the video frames using both RGB
and flow streams and sub-sample them at 5 frames per second.

4.1 Ablation Analysis

In this section, we analyze the impact of the different modules in our framework
on the anticipation performance. This analysis is conducted on the Breakfast
dataset and the results are shown in Table[I] Additional ablation experiments to
study the impact of the input to the recurrent encoder and decoder are provided
in the supplementary material.

Impact of the recognition module: The recognition module consists of two parts:
a TCN and a recognition loss L. Starting from only the sequence-to-sequence
module (S2S), we can achieve a good accuracy in the range 20% — 27%. By
combining the sequence-to-sequence module with the recognition module (S2S +
TCN + Lg), we gain an improvement of 1% —2% for each observation-prediction
percentage. This indicates that recognition helps the anticipation task. We also
evaluate the performance when the TCN is combined with the sequence-to-
sequence module without the recognition loss (S2S + TCN). As shown in Table[i]
the results are worse than using only the sequence-to-sequence module if we do
not apply the recognition loss. This can be explained by the structure of the
network. The recurrent encoder maps the features extracted by the TCN from
all frames to a single vector. Without additional loss for the recognition module,
the gradient vanishes and the parameters of the TCN are not well estimated.
Nevertheless, by just applying the recognition loss, we get enough supervisory
signal to train the TCN and improve the overall anticipation accuracy. This also
highlights that the improvements from the recognition module are due to the
additional recognition task and not because of having more parameters.
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Fig. 3. Impact of the cycle consistency loss. Cycle consistency verifies if, for the pre-
dicted future actions, all required actions have been done before and no essential action
is missing (a), and it further encourages the decoder to keep the important information
from the observations until the end, which results in better predictions (b).

Table 2. Comparison between the two-step approach and ours on the Breakfast
dataset. Numbers represent mean over classes (MoC) accuracy.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Two-Step 23.58 21.90 20.80 20.18 27.80 25.21 23.32 22.96
Ours 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20

Impact of the cycle consistency loss: The cycle consistency module predicts the
past activities from the predicted future. The intuition is that to be able to
predict the past activities, the predicted future activities have to be correct. As
shown in Table |1} using the cycle consistency loss gives an additional improve-
ment on the anticipation accuracy. The cycle consistency loss verifies if, for the
predicted future actions, all required actions have been done before and no essen-
tial action is missing. For example in Fig. 3| (a), the model observes spoon flour,
crack egq, pour milk, and stir dough. Without the cycle consistency the network
did not predict the action pour oil, which is required to fry pancake. By using
cycle consistency this issue is resolved. Cycle consistency also forces the decoder
to remember all observed activities. As illustrated in Fig. [3[ (b), the model ob-
serves spoon flour, crack egg, pour milk, butter pan, and stir dough. Without the
cycle consistency, the network predicts the action stirfry egg, which would have
been plausible if spoon flour and pour milk were not part of the observations.
Since the cycle consistency encourages the decoder to use all observed actions
for anticipation, the activity fry pancake is correctly anticipated.

Impact of the attention module: Finally, using the full model by combining the
recurrent decoder with the multi-head attention module further improves the
results by roughly 1%. As shown in Table [1} the gain from using the attention
module is higher when the observation percentage is 30%. This is mainly because
of the encoder module. Given the observed frames, the encoder tries to encode
them in a single vector. This means that the encoder has to throw away more
information from the long sequences compared to shorter sequences. In this case,
the attention module can help in capturing some of the lost information in the
encoder output by attending on the relevant information in the observations.
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Table 3. Comparison with the state-of-the-art. Numbers represent MoC accuracy.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Breakfast
RNN model [3] 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21
CNN model [3] 17.90 16.35 15.37 14.54 22.44 20.12 19.69 18.76
RNN [3] + TCN 05.93 05.68 05.52 05.11 08.87 08.90 07.62 07.69
CNN [3] + TCN 09.85 09.17 09.06 08.87 17.59 17.13 16.13 14.42
UAAA (mode) [2] 16.71 15.40 14.47 14.20 20.73 18.27 18.42 16.86
Time-Cond. [16] 18.41 17.21 16.42 15.84 22.75 20.44 19.64 19.75
Ours 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20
50Salads
RNN model [3] 30.06 25.43 18.74 13.49 30.77 17.19 14.79 09.77
CNN model [3] 21.24 19.03 15.98 09.87 29.14 20.14 17.46 10.86
RNN [3] + TCN 32.31 25.51 19.10 14.15 26.14 17.69 16.33 12.97
CNN [3] + TCN 16.02 14.68 12.09 09.89 19.23 14.68 13.18 11.20
UAAA (mode) [2] 24.86 22.37 19.88 12.82 29.10 20.50 15.28 12.31
Time-Cond. [16] 32.51 27.61 21.26 15.99 35.12 27.05 22.05 15.59
Ours 34.76 28.41 21.82 15.25 34.39 23.70 18.95 15.89

4.2 End-to-End vs. Two-Step Approach

To illustrate the benefits of end-to-end learning over two-step approaches, we
compare our framework with its two-step counterpart. For this comparison, we
first train the recognition module from our framework and then fix the weights
of the TCN and train the remaining components of our model with the anticipa-
tion loss and the cycle consistency loss. Table [2| shows the results of our frame-
work compared to the two-step approach on the Breakfast dataset with different
observation and prediction percentages. As shown in the table, our framework
outperforms the two-step approach with a large margin of up to 2.3%. This high-
lights the benefits of end-to-end approaches where the model can capture the
relevant information in the observed frames to anticipate the future. On the con-
trary, two-step approaches can only utilize the label information of the observed
frames that are not optimized for the anticipation task which is sub-optimal.

4.3 Comparison with the State-of-the-Art

In this section, we compare our framework with the state-of-the-art methods on
both the Breakfast dataset and 50Salads. We follow the same protocol and report
results for different observation and prediction percentages. Table[3|shows the re-
sults on both datasets. All the previous approaches follow the two-step approach
by inferring the action labels of the observed frames first and then use these labels
to anticipate the future activities. As shown in Table 3] our framework outper-
forms all the state-of-the-art methods by a large margin of roughly 5% — 8%
for each observation-prediction percentage pair on the Breakfast dataset. An
interesting observation is that all the previous approaches achieve comparable
results despite the fact that they are using different network architectures based
on RNNs [2I3], CNNs [3], or even temporal convolution [16]. On the contrary,
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Fig. 4. Qualitative results for anticipating future activities. (a) An example from the
Breakfast dataset for the case of observing 20% of the video and predicting the activities
in the following 50%. (b) An example from the 50Salads dataset for the case of observing
20% of the video and predicting the activities in the following 20%.

our framework clearly outperforms these approaches with the advantage that it
was trained in an end-to-end fashion.

For 50Salads, our model outperforms the state-of-the-art in 50% of the cases.
This is mainly because 50Salads is a small dataset. Since our model is trained
end-to-end, it requires more data to show the benefits over two-step approaches.

Since the state-of-the-art methods like [3] use an RNN-HMM model [33] for
recognition, we also report the results of [3] with our TCN as a recognition model.
The results are shown in Table [3| (RNN [3] + TCN and CNN [3] + TCN). Our
model outperforms these methods even when they are combined with TCN. This
highlights that the improvements in our model are not only due to the TCN,
but mainly because of the joint optimization of all modules for the anticipation
task in an end-to-end fashion and the introduced cycle consistency loss.

Qualitative results for our model on both datasets are illustrated in Fig. [ As
shown in the figure, our model can generate accurate predictions of the future ac-
tivities and their duration. We also show the results of the sequence-to-sequence
(S2S) and the two-step baselines. Our model anticipates the activities better.

5 Conclusion

In this paper, we introduced a model for anticipating future activities from a
partially observed video. In contrast to the state-of-the-art methods which rely
on the action labels of the observations, our model directly predicts the future ac-
tivities from the observed frames. We train the proposed model in an end-to-end
fashion and show a superior performance compared to the previous approaches.
Additionally, we introduced a cycle consistency loss for the anticipation task
which further boosts the performance. Our framework achieves state-of-the-art
results on two publicly available datasets.
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We provide more details about the attention module that we use for the sequence-
to-sequence model. We further provide more ablation experiments to study the impact
of the input to the recurrent encoder and decoder.

1 The Attention Module

For the sequence-to-sequence model, we use a recurrent encoder-decoder architecture
based on gated recurrent units (GRUs). The encoder encodes the observed frames in a
single vector which will be used to decode the future activities. Since the input to the
encoder are frame-wise features which might be very long, the output of the encoder
hi, might not be able to capture all the relevant information. To alleviate this problem
we combine the decoder with an attention mechanism using a multi-head attention
module.

Given the current hidden state of the decoder h%, and the output of the encoder at
each step hi., = (h{,...,h{, ), the attention output for a single head is computed by
first generating the query (q), the keys (K) and values (V) as described in the following

q = Wyhi, (1)
K= thi:t,ﬂ (2)
V= thiztoa (3)

where ¢ € R%4 is a column vector, K, V € R%*% and d4 is set to be one-eighth of
the hidden state size of the GRU. We normalize these tensors by the ||.||, norm and
then compute the output using a weighted sum of the values

Oy = Softmam(qTK)VT, (4)

where O, € R%4 is the output of a single head. We use 8 heads and concatenate the
output of these heads, apply a linear transformation and then concatenate the output
with the input of the decoder at each step.

2 Frame-wise Features vs. Frame-wise Labels

In our model, we use the output features of the recognition module as input to the
subsequent modules. Since the recognition module also predicts frame-wise class prob-
abilities of the observed frames, another option would be to pass these probabilities
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Table 1. Comparison between passing features vs. passing class probabilities of the ob-
served frames from the recognition module to the subsequent modules on the Breakfast
dataset. Numbers represent mean over classes (MoC) accuracy.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Ours with class probabilities  25.53 23.39 22.50 21.70 28.95 27.36 25.06 24.32
Ours with features 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20
Ours with features and prob.  25.15  23.41 22.53 21.64 29.21  26.62 24.65  24.69

Table 2. Impact of passing the predicted duration at each step to the recurrent decoder
on the Breakfast dataset. Numbers represent mean over classes (MoC) accuracy.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%
Ours with duration input 25.21 2094 19.61 20.38 2820 2471  23.58 23.15
Ours without duration input 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20

instead of the features. In this section, we provide a comparison between these two
variants. As shown in Table [I} passing frame-wise class probabilities gives a compa-
rable performance to frame-wise features. Nevertheless, using the features is slightly
better. This is expected as the features contain much richer information that can be
utilized by the subsequent modules. We also tried concatenating the frame-wise fea-
tures and the frame-wise class probabilities and pass the concatenated tensor to the
sequence-to-sequence module. However, it did not improve the results.

3 Impact of Passing the Duration to the Decoder

The GRU in the recurrent decoder takes as input at each step the predicted activity
label from the previous step as described in in the main paper. In this section, we
study the impact of passing the predicted duration to the decoder as well, i.e.

he = GRU([Am—1,bm_1], hd_1). (5)

As shown in Table [2] passing the duration to the decoder results in a degradation in
performance. This is due to passing the duration before applying the softmax, which
means that there might be huge variations in the duration value between different
iterations. While passing the duration after applying the softmax is not feasible, passing
only the activity labels provides enough information for the decoder. We also tried to
predict the absolute duration. In this case, no EOS symbol is predicted and the decoder
keeps generating future activities and their duration until the desired time horizon is
predicted. However, the model performed very poorly in this setup. This is expected
since predicting a stopping symbol is much easier than predicting the absolute duration
of all activities.
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