Skip to main content

Bias Detection and Prediction of Mapping Errors in Camera Calibration

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

Abstract

Camera calibration is a prerequisite for many computer vision applications. While a good calibration can turn a camera into a measurement device, it can also deteriorate a system’s performance if not done correctly. In the recent past, there have been great efforts to simplify the calibration process. Yet, inspection and evaluation of calibration results typically still requires expert knowledge.

In this work, we introduce two novel methods to capture the fundamental error sources in camera calibration: systematic errors (biases) and remaining uncertainty (variance). Importantly, the proposed methods do not require capturing additional images and are independent of the camera model. We evaluate the methods on simulated and real data and demonstrate how a state-of-the-art system for guided calibration can be improved. In combination, the methods allow novice users to perform camera calibration and verify both the accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we assume the underlying distribution is Gaussian but might be subject to sporadic outliers. The MAD multiplied by a factor of 1.4826 gives a robust estimate for the standard deviation [14].

  2. 2.

    To choose a threshold, it can be used that \(\frac{1}{1-\mathrm {BR}}\) is approximately F-distributed, representing the ratio of the residual sum of squares (SSE) of the calibration over the SSE of the virtual targets, weighted by their respective degrees of freedom. However, this only holds approximately, as the datapoints are not independent. We therefore use an empirical threshold of \(\tau _{BR}=0.2\), allowing for small biases.

  3. 3.

    The decomposition of the target must lead to an overdetermined estimation problem.

References

  1. Abraham, S., Förstner, W.: Calibration errors in structure from motion. In: Levi, P., Schanz, M., Ahlers, R.J., May, F. (eds.) Mustererkennung 1998, pp. 117–124. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-72282-0_11

  2. Beck, J., Stiller, C.: Generalized B-spline camera model. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 2137–2142. IEEE (2018). https://ieeexplore.ieee.org/abstract/document/8500466/

  3. Cheong, L.F., Peh, C.H.: Depth distortion under calibration uncertainty. Comput. Vis. Image Underst. 93(3), 221–244 (2004). https://doi.org/10.1016/j.cviu.2003.09.003. https://linkinghub.elsevier.com/retrieve/pii/S1077314203001437

  4. Cheong, L.F., Xiang, X.: Behaviour of SFM algorithms with erroneous calibration. Comput. Vis. Image Underst. 115(1), 16–30 (2011). https://doi.org/10.1016/j.cviu.2010.08.004. https://linkinghub.elsevier.com/retrieve/pii/S1077314210001852

  5. Cramariuc, A., Petrov, A., Suri, R., Mittal, M., Siegwart, R., Cadena, C.: Learning camera miscalibration detection. arXiv preprint arXiv:2005.11711 (2020)

  6. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2004). https://doi.org/10.1017/CBO9780511811685. oCLC: 171123855

  7. Luhmann, T., Robson, S., Kyle, S., Boehm, J.: Close-range Photogrammetry and 3D Imaging. De Gruyter textbook, De Gruyter (2013). https://books.google.de/books?id=TAuBngEACAAJ

  8. OpenCV: OpenCV Fisheye Camera Model. https://docs.opencv.org/master/db/d58/group__calib3d__fisheye.html

  9. Ozog, P., Eustice, R.M.: On the importance of modeling camera calibration uncertainty in visual SLAM. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3777–3784. IEEE (2013). https://ieeexplore.ieee.org/abstract/document/6631108/

  10. Peng, S., Sturm, P.: Calibration wizard: a guidance system for camera calibration based on modelling geometric and corner uncertainty. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1497–1505 (2019)

    Google Scholar 

  11. Rautenberg, U., Wiggenhagen, M.: Abnahme und ueberwachung photogrammetrischer messsysteme nach vdi 2634, blatt 1. PFG 2/2002, S.117-124 (2002). https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/VDI2634_1e.pdf

  12. Richardson, A., Strom, J., Olson, E.: AprilCal: assisted and repeatable camera calibration. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1814–1821. IEEE (2013). https://ieeexplore.ieee.org/abstract/document/6696595/

  13. Rojtberg, P., Kuijper, A.: Efficient pose selection for interactive camera calibration. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 31–36. IEEE (2018). https://ieeexplore.ieee.org/abstract/document/8613748/

  14. Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)

    Article  MathSciNet  Google Scholar 

  15. Schoeps, T., Larsson, V., Pollefeys, M., Sattler, T.: Why Having 10,000 Parameters in Your Camera Model is Better Than Twelve. arXiv preprint arXiv:1912.02908 (2019). https://arxiv.org/abs/1912.02908

  16. Strauss, T.: Kalibrierung von Multi-Kamera-Systemen. KIT Scientific Publishing (2015). https://d-nb.info/1082294497/34

  17. Svoboda, T., Sturm, P.: What can be done with a badly calibrated Camera in Ego-Motion Estimation? (1996). https://hal.inria.fr/inria-00525701/

  18. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  19. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://ieeexplore.ieee.org/abstract/document/888718/

  20. Zucchelli, M., Kosecka, J.: Motion bias and structure distortion induced by calibration errors, pp. 68.1–68.10. British Machine Vision Association (2001). https://doi.org/10.5244/C.15.68. http://www.bmva.org/bmvc/2001/papers/51/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Hagemann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 236 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hagemann, A., Knorr, M., Janssen, H., Stiller, C. (2021). Bias Detection and Prediction of Mapping Errors in Camera Calibration. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics