Skip to main content

A Differentiable Convolutional Distance Transform Layer for Improved Image Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Abstract

In this paper we propose using a novel differentiable convolutional distance transform layer for segmentation networks such as U-Net to regularize the training process. In contrast to related work, we do not need to learn the distance transform, but use an approximation, which can be achieved by means of the convolutional operation. Therefore, the distance transform is directly applicable without previous training and it is also differentiable to ensure the gradient flow during backpropagation. First, we present the derivation of the convolutional distance transform by Karam et al. [6]. Then we address the problem of numerical instability for large images by presenting a cascaded procedure with locally restricted convolutional distance transforms. Afterwards, we discuss the issue of non-binary segmentation outputs for the convolutional distance transform and present our solution attempt for the incorporation into deep segmentation networks. We then demonstrate the feasibility of our proposal in an ablation study on the publicly available SegTHOR data set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229 (2017)

    Google Scholar 

  2. Bui, T.D., Wang, L., Chen, J., Lin, W., Li, G., Shen, D.: Multi-task learning for neonatal brain segmentation using 3D dense-Unet with dense attention guided by geodesic distance. In: Wang, Q., et al. (eds.) DART/MIL3ID 2019. LNCS, vol. 11795, pp. 243–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_28

    Chapter  Google Scholar 

  3. Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 388–400. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44935-3_27

    Chapter  Google Scholar 

  4. Dangi, S., Linte, C.A., Yaniv, Z.: A distance map regularized CNN for cardiac cine MR image segmentation. Med. Phys. 46(12), 5637–5651 (2019)

    Article  Google Scholar 

  5. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  6. Karam, C., Sugimoto, K., Hirakawa, K.: Fast convolutional distance transform. IEEE Signal Process. Lett. 26(6), 853–857 (2019)

    Article  Google Scholar 

  7. Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning (2020)

    Google Scholar 

  8. Navarro, F., et al.: Shape-aware complementary-task learning for multi-organ segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 620–627. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_71

    Chapter  Google Scholar 

  9. Oktay, O., Ferrante, E., et al.: Anatomically Constrained Neural Networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  10. Paragios, N., Rousson, M., Ramesh, V.: Matching distance functions: a shape-to-area variational approach for global-to-local registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 775–789. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47967-8_52

    Chapter  Google Scholar 

  11. Pham, D.D., Dovletov, G., Warwas, S., Landgraeber, S., Jäger, M., Pauli, J.: Deep learning with anatomical priors: imitating enhanced autoencoders in latent space for improved pelvic bone segmentation in MRI. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1166–1169. IEEE (2019)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47967-8_6

    Chapter  Google Scholar 

  14. Trullo, R., Petitjean, C., Dubray, B., Ruan, S.: Multiorgan segmentation using distance-aware adversarial networks. J. Med. Imaging 6(1), 014001 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Duy Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, D.D., Dovletov, G., Pauli, J. (2021). A Differentiable Convolutional Distance Transform Layer for Improved Image Segmentation. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics