Skip to main content

Characterizing Dementia Caregivers’ Information Exchange on Social Media: Exploring an Expert-Machine Co-development Process

  • Conference paper
  • First Online:
Book cover Diversity, Divergence, Dialogue (iConference 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12645))

Included in the following conference series:

Abstract

Social media platforms have introduced new opportunities for supporting family caregivers of persons with Alzheimer’s disease and related dementias (ADRD). Existing methods for exploring online information seeking and sharing (i.e., information exchange) involve examining online posts via manual analysis by human experts or fully automated data-driven exploration through text classification. Both methods have limitations. In this paper, we propose an innovative expert–machine co-development (EMC) process that enables rich interactions and co-learning between human experts and automatic algorithms. By applying the EMC in analyzing ADRD caregivers’ online behaviors, we illustrate steps required by the EMC, and demonstrate its effectiveness in enhancing human experts’ representations of ADRD caregivers’ online information exchange and developing more accurate automatic classification models for ADRD caregivers’ information exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.reddit.com/r/Alzheimers.

  2. 2.

    Due to space limit, we are showing an abbreviated version of HIW-ADRD 3.0 with limited content such as sample keywords; to obtain the full version, contact the authors.

References

  1. Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 559–560 (2018)

    Google Scholar 

  2. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)

    Google Scholar 

  3. Andalibi, N., Haimson, O.L., De Choudhury, M., Forte, A.: Understanding social media disclosures of sexual abuse through the lenses of support seeking and anonymity. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3906–3918 (2016)

    Google Scholar 

  4. Anderson, J.G., Hundt, E., Dean, M., Rose, K.M.: “A fine line that we walk every day”: self-care approaches used by family caregivers of persons with dementia. Issues Mental Health Nurs. 40(3), 252–259 (2019)

    Article  Google Scholar 

  5. Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 15(3), 321–387 (2019)

    Article  Google Scholar 

  6. Bateman, D.R., Brady, E., Wilkerson, D., Yi, E.H., Karanam, Y., Callahan, C.M.: Comparing crowdsourcing and friendsourcing: a social media-based feasibility study to support Alzheimer disease caregivers. JMIR Res. Protoc. 6(4), e56 (2017)

    Article  Google Scholar 

  7. Bonner, G.J., Wang, E., Wilkie, D.J., Ferrans, C.E., Dancy, B., Watkins, Y.: Advance care treatment plan (ACT-plan) for African American family caregivers: a pilot study. Dementia 13(1), 79–95 (2014)

    Article  Google Scholar 

  8. Bowler, L., Monahan, J., Jeng, W., Oh, J.S., He, D.: The quality and helpfulness of answers to eating disorder questions in Yahoo! answers: teens speak out. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–10 (2015)

    Article  Google Scholar 

  9. Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Feature selection using support vector machines. WIT Trans. Inf. Commun. Technol. 28 (2002)

    Google Scholar 

  10. Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 167–176 (2011)

    Google Scholar 

  11. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  12. Chen, Y., Cao, H., Mei, Q., Zheng, K., Xu, H.: Applying active learning to supervised word sense disambiguation in medline. J. Am. Med. Inf. Assoc. 20(5), 1001–1006 (2013)

    Article  Google Scholar 

  13. Collopy, B.J.: The moral underpinning of the proxy-provider relationship: issues of trust and distrust. J. Law Med. Ethics 27(1), 37–45 (1999)

    Article  Google Scholar 

  14. Ditto, P.H., et al.: Advance directives as acts of communication: a randomized controlled trial. Arch. Internal Med. 161(3), 421–430 (2001)

    Article  Google Scholar 

  15. Dosono, B.: Identity work of Asian Americans and Pacific Islanders on reddit: traversals of deliberation, moderation, and decolonization (2019)

    Google Scholar 

  16. Einterz, S.F., Gilliam, R., Lin, F.C., McBride, J.M., Hanson, L.C.: Development and testing of a decision aid on goals of care for advanced dementia. J. Am. Med. Direct. Assoc. 15(4), 251–255 (2014)

    Article  Google Scholar 

  17. Erdelez, S., Tanacković, S.F., Balog, K.P.: Online behavior of the Alzheimer’s disease patient caregivers on croatian online discussion forum. Proc. Assoc. Inf. Sci. Technol. 56(1), 78–88 (2019)

    Article  Google Scholar 

  18. Esuli, A., Moreo, A., Sebastiani, F.: Building automated survey coders via interactive machine learning. arXiv preprint arXiv:1903.12110 (2019)

  19. Eyheramendy, S., Lewis, D.D., Madigan, D.: On the Naive Bayes model for text categorization (2003)

    Google Scholar 

  20. Fox, S., et al.: The social life of health information. Pew Internet & American Life Project Washington, DC (2011)

    Google Scholar 

  21. Gessert, C.E., Forbes, S., Bern-Klug, M.: Planning end-of-life care for patients with dementia: roles of families and health professionals. OMEGA J. Death Dying 42(4), 273–291 (2001)

    Article  Google Scholar 

  22. Hanson, L.C., et al.: Improving decision-making for feeding options in advanced dementia: a randomized, controlled trial. J. Am. Geriatr. Soc. 59(11), 2009–2016 (2011)

    Article  Google Scholar 

  23. Hawn, C.: Take two aspirin and tweet me in the morning: how Twitter, Facebook, and other social media are reshaping health care. Health Aff. 28(2), 361–368 (2009)

    Article  Google Scholar 

  24. Hopwood, J., et al.: Internet-based interventions aimed at supporting family caregivers of people with dementia: systematic review. J. Med. Internet Res. 20(6), e216 (2018)

    Article  Google Scholar 

  25. Isaac, M., Streitfeld, D.: It’s silicon valley 2, ellen pao 0: Fighter of sexism is out at reddit. New York Times (2015)

    Google Scholar 

  26. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  27. Jox, R.J., Denke, E., Hamann, J., Mendel, R., Förstl, H., Borasio, G.D.: Surrogate decision making for patients with end-stage dementia. Int. J. Geriat. Psychiatry 27(10), 1045–1052 (2012)

    Article  Google Scholar 

  28. Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., Branson, K.: JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10(1), 64 (2013)

    Article  Google Scholar 

  29. Kose, I., Gokturk, M., Kilic, K.: An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Appl. Soft Comput. 36, 283–299 (2015)

    Article  Google Scholar 

  30. Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137 (2015)

    Google Scholar 

  31. Lunga, D., Yang, H.L., Reith, A., Weaver, J., Yuan, J., Bhaduri, B.: Domain-adapted convolutional networks for satellite image classification: a large-scale interactive learning workflow. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 962–977 (2018)

    Article  Google Scholar 

  32. Magnini, B., Minard, A.L., Qwaider, M.R., Speranza, M.: TextPro-AL: an active learning platform for flexible and efficient production of training data for nlp tasks. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations, pp. 131–135 (2016)

    Google Scholar 

  33. Nie, L., Xie, B., Yang, Y., Shan, Y.M.: Characteristics of Chinese m-health applications for diabetes self-management. Telemed. e-Health 22(7), 614–619 (2016)

    Article  Google Scholar 

  34. Pagán-Ortiz, M.E., Cortés, D.E., Rudloff, N., Weitzman, P., Levkoff, S.: Use of an online community to provide support to caregivers of people with dementia. WJ. Gerontol. Soc. Work 57(6–7), 694–709 (2014)

    Article  Google Scholar 

  35. Patel, R., Chang, T., Greysen, S.R., Chopra, V.: Social media use in chronic disease: a systematic review and novel taxonomy. Am. J. Med. 128(12), 1335–1350 (2015)

    Article  Google Scholar 

  36. Reichert, J.R., Kristensen, K.L., Mukkamala, R.R., Vatrapu, R.: A supervised machine learning study of online discussion forums about type-2 diabetes. In: 2017 IEEE 19Th International Conference on E-health Networking, Applications and Services (Healthcom), pp. 1–7. IEEE (2017)

    Google Scholar 

  37. Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  38. Stirling, C., et al.: Decision aids for respite service choices by carers of people with dementia: development and pilot RCT. BMC Med. Inf. Decis. Making 12(1), 21 (2012)

    Article  Google Scholar 

  39. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  40. Swigart, V., Lidz, C., Butteworth, V., Arnold, R.: Letting go: family willingness to forgo life support. Heart Lung 25(6), 483–494 (1996)

    Article  Google Scholar 

  41. Tang, B., Kay, S., He, H.: Toward optimal feature selection in Naive Bayes for text categorization. IEEE Trans. knowl. Data Eng. 28(9), 2508–2521 (2016)

    Article  Google Scholar 

  42. Teso, S., Kersting, K.: Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 239–245 (2019)

    Google Scholar 

  43. Thackeray, R., Crookston, B.T., West, J.H.: Correlates of health-related social media use among adults. J. Med. Internet Res. 15(1), e21 (2013)

    Article  Google Scholar 

  44. Tran, V.C., Nguyen, N.T., Fujita, H., Hoang, D.T., Hwang, D.: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields. Knowl. Based Syst. 132, 179–187 (2017)

    Article  Google Scholar 

  45. Trivedi, G., Pham, P., Chapman, W.W., Hwa, R., Wiebe, J., Hochheiser, H.: Nlpreviz: an interactive tool for natural language processing on clinical text. J. Am. Med. Inf. Assoc. 25(1), 81–87 (2018)

    Article  Google Scholar 

  46. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47(7), 2218–2232 (2009)

    Article  Google Scholar 

  47. Ullah, M.R., Bhuiyan, M.A.R., Das, A.K.: Ihemha: interactive healthcare system design with emotion computing and medical history analysis. In: 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT), pp. 1–8. IEEE (2017)

    Google Scholar 

  48. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  49. Wang, Y.C., Kraut, R.E., Levine, J.M.: Eliciting and receiving online support: using computer-aided content analysis to examine the dynamics of online social support. J. Med. Internet Res. 17(4), e99 (2015)

    Article  Google Scholar 

  50. Wang, Y., Zheng, K., Xu, H., Mei, Q.: Clinical word sense disambiguation with interactive search and classification. In: AMIA Annual Symposium Proceedings, vol. 2016, p. 2062. American Medical Informatics Association (2016)

    Google Scholar 

  51. Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I.H.: Interactive machine learning: letting users build classifiers. Int. J. Hum. Comput. Stud. 55(3), 281–292 (2001)

    Article  MATH  Google Scholar 

  52. Wen, M., Rosé, C.P.: Understanding participant behavior trajectories in online health support groups using automatic extraction methods. In: Proceedings of the 17th ACM International Conference on Supporting Group Work, pp. 179–188 (2012)

    Google Scholar 

  53. Xie, B., Su, Z., Liu, Y., Wang, M., Zhang, M.: Health information wanted and obtained from doctors/nurses: a comparison of Chinese cancer patients and family caregivers. Support. Care Cancer 23(10), 2873–2880 (2015)

    Article  Google Scholar 

  54. Xie, B., Su, Z., Liu, Y., Wang, M., Zhang, M.: Health information sources for different types of information used by Chinese patients with cancer and their family caregivers. Health Expect. 20(4), 665–674 (2017)

    Article  Google Scholar 

  55. Xie, B., Wang, M., Feldman, R.: Preferences for health information and decision-making: development of the health information wants (HIW) questionnaire. In: Proceedings of the 2011 iConference, pp. 273–280 (2011)

    Google Scholar 

  56. Xie, B., Wang, M., Feldman, R., Zhou, L.: Internet use frequency and patient-centered care: measuring patient preferences for participation using the health information wants questionnaire. J. Med. Internet Res. 15(7), e132 (2013)

    Article  Google Scholar 

  57. Xie, B., Wang, M., Feldman, R., Zhou, L.: Exploring older and younger adults’ preferences for health information and participation in decision making using the h ealth i nformation w ants q uestionnaire (hiwq). Health Expect. 17(6), 795–808 (2014)

    Article  Google Scholar 

  58. Yin, Z., Sulieman, L.M., Malin, B.A.: A systematic literature review of machine learning in online personal health data. J. Am. Med. Inf. Assoc. 26(6), 561–576 (2019)

    Article  Google Scholar 

  59. Yoon, S., Lucero, R., Mittelman, M.S., Luchsinger, J.A., Bakken, S.: Mining twitter to inform the design of online interventions for Hispanic Alzheimer’s disease and related dementias caregivers. Hispanic Health Care Int. 18(3), 138–143 (2020)

    Article  Google Scholar 

  60. Zhang, S., Grave, E., Sklar, E., Elhadad, N.: Longitudinal analysis of discussion topics in an online breast cancer community using convolutional neural networks. J. Biomed. Inf. 69, 1–9 (2017)

    Article  Google Scholar 

  61. Zhao, Y., Zhang, J.: Consumer health information seeking in social media: a literature review. Health Inf. Libr. J. 34(4), 268–283 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing He .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Importance Score calculation

The keyword importance score I is a measure that is model-dependent, so we introduce the implementation of I within the three classification models:

  • Our linear kernel SVM model can be written as \(c=signal(b+W^Tx)\), where \(W=(w_1,w_2, ... w_k)\) are the weights for the features in the model. abs(wi) represents the importance of the feature in the model [9], so it is selected as the I score.

  • When expressed in log-space, classification based on Multinomial Naïve Bayes model can be written as Formula 4, where \(b=log(p(c_j))\) and \(w_ji=log(p_ji)\). Weighted Average Pointwise Mutual Information (WAPMI) calculated from \(w_ji\) is a good measurement to evaluate the importance of the feature [41], so it can be used as the I score. Note that the WAPMI score is between keyword t and model m, and it is different from MI(tc) where c is a category.

    $$\begin{aligned} log(p(c_j|x))&= log(p(c_j)\prod \limits _ip_ji^xi) \nonumber \\&= log(p(c_j)) +\sum \limits _ix_ilog(p_ji) \nonumber \\&= b+ W^t_j x \end{aligned}$$
    (4)
  • The Xgboost model generates a forest of decision trees \(T=(t_1,t_2,...,t_n)\), where a feature \(x_t\) is used to split a branch \(b_{ij}\) within a tree. The information gain \(gain(x_t,b_{ij})\) for feature x in branch \(b_{ij}\) can be used to measure whether the split is good. By calculating the average gain \(gain(c_t)\)(see Formula 5) across all the trees in the forest, we can measure how feature \(c_k\) affects the whole model.\(gain(c_k)\) is the most important score for Xgboost feature selection  [11]. Thus, we use this score as the I score.

$$\begin{aligned} gain(c_t)=\frac{\sum \limits _{i=1}^n\sum \limits _{j=1}^{b_i}gain(x_i,b_{ij})}{\sum \limits _{i=1}^nb_i} \end{aligned}$$
(5)

1.2 A.2 Abbreviations

ADRD :

Alzheimer’s disease and related dementias

EMC :

Expert–machineco-development

AE :

Automatic Exploration

IML :

Interactive Machine Learning

HIW :

Health Information Wants

EOL :

End-of-life

IAEI :

Interactive Auto Exploration Interface

KT :

Keyword Tuning

I :

Important Score

MI :

Mututal Infomration Score

KF :

Keyword Frequency

PG :

Potnetially Good Recommendation Group

PB :

Potnetially Bad Recommendation Group

LF :

Low Frequency Recommendation Group

NK :

New Keywords Recommendation Group

AMI :

Average Mutual Information Score

nDCG :

Normalized Discounted Cumulative Gain

ID :

Initial Dataset

TEST :

Test Dataset

RD :

Recommendation Dataset

RD :

Recommendation Dataset

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2021). Characterizing Dementia Caregivers’ Information Exchange on Social Media: Exploring an Expert-Machine Co-development Process. In: Toeppe, K., Yan, H., Chu, S.K.W. (eds) Diversity, Divergence, Dialogue. iConference 2021. Lecture Notes in Computer Science(), vol 12645. Springer, Cham. https://doi.org/10.1007/978-3-030-71292-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71292-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71291-4

  • Online ISBN: 978-3-030-71292-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics