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Abstract. The need for users’ safety and technology acceptability has incredibly
increased with the deployment of co-bots physically interacting with humans in
industrial settings, and for people assistance. A well-studied approach to meet
these requirements is to ensure human-like robot motions and interactions. In
this manuscript, we present a research approach that moves from the understand-
ing of human movements and derives usefull guidelines for the planning of arm
movements and the learning of skills for physical interaction of robots with the
surrounding environment.

Keywords: Human motor control · Human-like robotic movements · Machine
learning · Learning from humans

1 Deriving a Basis of Human Movements

There are many examples in literature that have highlighted the importance of human-
likeness (HL) to ensure a safe and effective Human-Robot Interaction (HRI) and
Enviroinment-Robot Interaction [8]. This aspect has gained increasing attention, since it
could open interesting perspectives for the control of artificial systems that closely inter-
act with humans, as is the case of assistive, companion and rehabilitative robots. For the
latter category, for example, human-inspired movement profiles could be used as refer-
ence trajectories for rehabilitation exoskeletons (see [10] for review), as an alternative
to, and/or in association with, classic rehabilitation procedures [9]. Similarly, human
likeliness of movements is of paramount importance for robots that interact with the
surrounding environment in an unstructured scenario shared with humans.

Indeed, in these cases the motion of a robot can be more easily predicted, and hence
accepted, by the user, if its movements are designed taking inspiration from actual
human movements [14], leading to a general enhancement in terms of system usability
and effectiveness. However, the design of control laws that effectively ensure human-
like behavior in robotic systems is not straightforward, representing an important topic
within the general framework of robot motion planning.
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Fig. 1. Example of the 30 different tasks included in this study. Three blocks are considered, the
first including gestures (intransitive tasks), the second actions which involve the contact with an
object (transitive tasks), while the third actions that requires an object to interat with another
object (tool-mediated tasks).

The solution we implemented to solve this problem exploits functional analysis to
derive a basis of Eigenfunctions of human movements, which encode the characteristics
of typical physiological motions.

To this end, we recorded the motion of 33 healthy subjects performing a list of 30
different actions of daily living (see Fig. 1).

Then, functional Principal Components Analysis (fPCA) was used to identify a
basis of principal functions (or eigenfunctions), characterized by the fact that they
are ordered in terms of importance. More specifically, let us assume, without any
loss of generality, a 7 DoF kinematic model to represent upper limb joint trajectories
q(t) : R → R

7 where t ∈ [0, 1] is the normalized time. In these terms, generic upper
limb motion q(t) can be decomposed in terms of the weighted sum of base elements
Si(t), or functional Principal Components (fPCs):

q(t) � q̄(t) + S0(t) +
smax∑

i=1

αi ◦ Si(t) , (1)

where αi ∈ R
n is a vector of weights, Si(t) ∈ R

n - in this case n equals to 7 - is the ith

basis element or fPC and smax is the number of basis elements. The operator ◦ is the
element-wise product (Hadamard product), q̄ ∈ R

7 is the average posture of q while
S0 : R → R

7 is the average trajectory, also called zero-order fPC. The output of fPCA,
which is calculated independently for each joint, is a basis of functions {S1, . . . , Ssmax}
that maximizes the explained variance of the movements in the collected dataset. Given
a dataset with N elements collecting the trajectories recorded in a given joint j, the first
fPC Sj,1(t) is the function that solves the following problem

max
Sj,1

N∑

j=1

(∫
Sj,1(t)qj(t)dt

)2

subject to ||Sj,1(t)||22 =
∫ 1

0

S2
j,1(t)dt = 1 .

(2)

Subsequent fPCs Sj,i(t) are the functions that solve the following:
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Fig. 2. Plots of the first four orthogonal functional Principal Components extracted 33 healthy
subjects while performing a list of 30 different daily living activities. Image adapted from [3].

max
Sj,i

N∑

j=1

(∫
Sj,i(t)qj(t)dt

)2

subject to ||Sj,i(t)||22 = 1
∫ 1

0

Sj,i(t)Sp(t)dt = 0 , ∀p ∈ {1, . . . , i − 1} .

(3)

A detailed implementation of this method - which bypasses the solution of the min-
imization problem - is presented in [2]. The core idea is that the output of this process
is an ordered list of functions that are organised following the importance that each
function has in reconstructing the whole dataset (see Fig. 2).

Note that this formalization of human trajectories is very compact and full of infor-
mation, and can enable several practical implementations. For example, one can observe
that the higher in the number of functional PCs required to reconstruct one specific
movement, the more complex (or jerky) the motion is. This can have a direct impact for
the evaluation of motion impairment, for example as a consequence of a stroke event.
Indeed, pathological movements are typically characterized by jerky movements, and
an assessment of the level of impairment can rely on the fPCA characterization, as we
proposed in [15].

Moreover, the hierarchy in the definition of subsequent fPCs is a key characteristics,
since it can be exploited to design incremental algorithms [1] of motion planning, as
presented in the following of this manuscript.
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2 Planning Robots’ Movements with fPCs

As previously discussed, typical approaches used in literature to achieve human like-
ness [12] in robotic motions rely on the strong assumption that human movements are
generated by optimizing a known cost function Jhl(q) : C1

7[0, 1) → R
+, whereC1

7[0, 1)
is the space of smooth functions going from [0, 1) to the joint space R7, and 1 stands for
the final normalized time. The function Jhl is used to produce artificial natural motions
by solving the problem

min
q∈C1

7[0,1)
Jhl(q) . (4)

How to choose Jhl is not obvious, and it is indeed a very debated topic in literature.
However only achieving human likeness is meaningless without specifying also a task
to be accomplished. For this reason also a model of the task should be added to (4).
The latter point can be formulated in terms of the minimization of an additional cost
function Jtask : C1

7 → R
+. As soon as the need for minimizing Jtask is introduced,

(4) becomes a multi-objective optimization, which is of very difficult formulation and
solution, except for very simple cases [12].

The solution we proposed is able to by-pass this issue. Indeed, instead of using data
to guess a reasonable Jhl(·), and then explicitly optimize it, our solution directly embeds
human likeness in the choice of the functional subspace where the optimization occurs.
More specifically, the problem move from the infinite dimensional functional space
C1

7[0, 1), to its finite dimensional subspace containing all the functions so constructed:

q(t) = q̄ + S0(t) +
M∑

i=1

αi ◦ Si(t) (5)

with q̄, Si, αi defined as in the previous section. In this way the principal components
can be used to generate motions happening within any time horizon [0, t′fin).

M ≤ smax is the number of functional Principal Components considered in the
optimization (with smax as in previous Section). According to the preliminary results
presented in [2] and further extended in [3], it is plausible to expect that a low num-
ber of functional Principal Components should be sufficient to implement most of the
human-like motions at the joint level. Therefore the multi-object and unconstrained
optimization can be formulated as the following constrained optimization problem:

min
q̄,α1,...,αM

Jtask(q)

subject to q(t) = q̄ + S0(t) +
M∑

i=1

αi ◦ Si(t) .
(6)

In this manner, the search space is narrowed, with the twofold purpose of ensuring
human likeness, and strongly simplifying the control problem (indeed, the search space
is now of dimension M + 1).
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Point-to-Point Free Motions. Point-to-point motion can be generated by solving the
following optimization problem, instance of the more general formulation (6)

min
q̄,α1,...,αM

||q(0) − q0||22 + ||q(1) − qfin||22

subject to q(t) = q̄ + S0(t) +
M∑

i=1

αi ◦ Si(t) ,
(7)

where q(0) and q(1) are the initial and final poses of the calculated trajectory, while q0
and qfin are the desired initial and final poses respectively. In this simple case, a single
functional Principal Component (i.e. M = 1) is already sufficient to solve (7) with zero
error, and the solution can be written in closed form (see [3]).

Obstacle Avoidance. Let us consider the case in which we also need to avoid one
or more obstacles, while performing the point-to-point motion. The problem can be
generalized as:

min
q̄,α1,...,αM

∣∣∣∣

∣∣∣∣

[
q(0) − q0
q(1) − qfin

]∣∣∣∣

∣∣∣∣
2

2

+ ρP (q, PO)

subject to q(t) = q̄ + S0(t) +
M∑

i=1

αi ◦ Si(t) .

(8)

Two terms can be distinguished in this cost function. The first contribution guarantees
that the desired initial and final poses are achieved, as for the free motion case (7). The
second term takes into account the distance w.r.t. obstacles. For the sake of conciseness,
and without any loss of generality, we considered here NO spherical obstacles. Given
PO = {PO1 , . . . , PONO

} the set containing the Cartesian coordinates of all the centers
of these obstacles, P (q, PO) is a potential-based function that sums up, for each obsta-
cle, a term inversely proportional to the minimum distance between the obstacle and
the closest joint trajectory, i.e.

P (q, PO) =
NO∑

i=1

1
mi(q([0, 1]), POi

)
)2 (9)

where mi is the distance between the arm and the i − th obstacle, defined as
mi(q([0, 1]), POi

) = mink{d(hk(q([0, 1])), POi
)} .

The distance between the k − th point of contact with forward kinematics hk, and
the i − th sphere is

d(hk(q([0, 1])), POi
) = max

{
min

x∈hk(q([0,1]))
||POi

− x||2, ROi

}
, (10)

with ROi
radius of the sphere.
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Fig. 3. In this example our approach is used to generate a “drinking” task, with and without
obstacles along the trajectory.

Incremental Optimization Procedure. The problem of motion generation with obsta-
cle avoidance does not have a closed-form solution, hence the optimal trajectory is cal-
culated via numerical optimization. One solution to do this is to exploit the hierarchy
of fPCs basis elements, according to a descending amount of the associated explained
variance, and implemented an incremental procedure (see [3] for the implementation
of the Algorithm). The proposed approach calculates, given a fixed number of fPCs
enrolled, the optimal trajectory that minimizes the error in starting and final position
while maximizing the distance from the obstacles. If the corresponding solution is suf-
ficiently far from the obstacles, this choice already defines the globally optimal solu-
tion. If the obstacles are not very close to the aforementioned trajectory, then solving
(8) with M = 1 would fine tune the initial guess, achieving good results. In case of
obstacles very close to or even intercepting the free-motion trajectory, at least one more
fPC should be enrolled to suitably solve the problem. The more are the basis elements
enrolled, the more complex are the final trajectories that can be implemented (see e.g.
Fig. 3 for the generation of a “drinking” motion).

3 Learning from Humans How to Grasp: Enhancing the Reaching
Strategy

Deriving useful information from Humans can be pushed even further through the usage
of machine learning techniques. However, it is important to recall that learning based
techniques can only achieve solutions that are close enough to the desired ones, rather
than exact. This uncertainty can be naturally compensated by the ability of soft hands to
locally adapt to unknown environments. Following this approach, part of our effort has
been devoted to the development of a human inspired multi-modal, multi-layer archi-
tecture that combines feedforward components, predicted by a Deep Neural Network,
with reactive sensor-triggered actions (more details in [5]).

Humans are able to accomplish very complex grasps by employing a vast range of
different strategies [7]. This comes with the challenging problem of finding the right
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Fig. 4. High level organization of the proposed architecture, which combines anticipatory actions
and reactive behavior. A deep classifier looks at the scene and predicts the strategy that a human
operator would use to grasp the object. This output is employed to select the corresponding
robotic primitive. These primitives define the posture of the hand over time, to produce a nat-
ural, human-like motion. The IMUs placed on the fingers of the hand detect the contact with the
items and triggers a suitable reactive grasp behavior.

strategy to use for a given scenario. It is commonly suggested that the animal brain
addresses this challenge by first constructing representations of the world, which are
used to make a decision, and then by computing and executing an action plan [11].
Rather than learning a monolithic end-to-end map, we built the proposed architecture
as combination of interpretable basic elements organized as in Fig. 4. The intelligence is
here distributed on three levels of abstractions; i) high level: a classifier which plans the
correct action among all the available ones, ii) medium level: a set of human-inspired
low level strategies implementing both the approaching phase and the sensor-triggered
reaction, iii) low level: a soft hand whose embodied intelligence mechanically manages
local uncertainties. All the three levels are human-inspired.

The classifier was realized through a deep neural network, trained to predict the
object-directed grasp action chosen among nine human-labeled strategies, using as
input only a first-person RBG image extracted from a video. These actions were imple-
mented on the robotic side to reproduce the motions observed in the videos. A reactive
component was then introduced, following the philosophy of [4]. This component take
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Fig. 5. Photosequence of a grasp produced by the proposed architecture during validation. The
hand starts from the initial configuration of the primitive in panel (a). The contact happens in
panel (b), triggering the reactive routine. In panel (f) the object is firmly lifted.

as input the accelerations coming from six IMUs placed on the soft hand to generate
the desired evolution of the hand pose. The lower level of intelligence consists of the
soft hand itself, which can take care of local uncertainties relying on its intrinsic com-
pliance. Any robotic hand being soft and anthropomorphic both in its motions and in its
kinematics can serve to the scope (as for example the Pisa/IIT SoftHand).

3.1 Deep Classifier

The aim of this deep neural network is to associate to an object detected from the scene
the correct primitive (i.e. hand pose evolution) humans would perform to grasp it. The
deep learning model consists of two stages, depicted in Fig. 4: one for detecting the
object, and the second one to perform the actual association with the required motion.

Dataset Creation and Human Primitive Labeling. The network was trained on 6336
first person RGB videos (single-object, table-top scenario), from 11 right-handed sub-
jects grasping the 36 objects. The list of objects was chosen to span a wide range of pos-
sible grasps, taking inspiration from [6]. During the experiments, subjects were com-
fortably seated in front of a table, where the object was placed. They were asked to
grasp the object starting from a rest position (hand on the table, palm down). Each task
was repeated 4 times from 4 points of view (the four central points of the table edges).
To extract and label the strategies, videos were visually inspected to identify ten main
primitives (power, pinch, sliding, lateral and flip grasps in different relative orienta-
tions). The choice of these primitives was done taking inspiration from literature [6,7],
and to provide a representative yet concise description of human behavior, without any
claim of exhaustiveness. The first frame of each video showing only the object in the
environment was extracted, and elaborated through the object detection part of the net-
work (see next subsection). The cropped image was then labeled with the strategy used
by the subject in the remaining part of the video. This is the dataset that we used to train
the network.

Object Detection and Primitive Classification. Object detection is implemented
using the state of the art detector YOLOv2 [13]. Given the RGB input image, YOLOv2
produces as output a set of labeled bounding boxes containing all the objects in the
scene. Assuming that the target is localized close to the center of the image, we select
the bounding box closest to the scene center. Then, a modification of Inception-v3 [16],
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Fig. 6. Photosequence of a grasp produced by the proposed architecture during validation: slide
grasp of a flat plate. Panels (a–c) depicts the approaching phase. In panels (d–e) the environment
is exploited to guide the object to the table edge. In panels (f–g) the hand changes its relative
position w.r.t. the object so to favor the grasp, which is established in panels (h–i). In panel (j) the
item is firmly lifted.

trained on the ImageNet data set, was used to classify objects from images and extract
high level semantic descriptions that can be applied to objects with similar characteris-
tics. Technical details on training and validation are here omitted, the interested reader
is invited to refer to [5].

3.2 Robotic Grasping Primitives

The output of the network introduced in the previous section is a direction of approach,
described in terms of an high level description of the human preference for the specific
object shape and orientation. For each primitive, a Human-Like approaching trajectory
needs to be planned (following, for example, the approach presented in section II).

As a trade-off between performance and complexity, the approaching phase is asso-
ciated with an additional reactive behavior. All the experiments are executed with a
Kuka LWR robot, endowed with a Pisa/IIT SoftHand and controlled through an Carte-
sian impedance regulator. The role of the latter is to introduce a feedback control lever-
aging on measures recorded through IMUs at the fingertip level, with the ultimate goal
of locally precisely arrange the relative configuration between hand and object (see
[4]). The transition between the first and the second phase is triggered by a contact
event, detected as an abrupt acceleration of the fingertips (as read by IMUs). In [4], a
subject was asked to reach and grasp a tennis ball while maneuvering a Pisa/IIT Soft-
Hand. The grasp was repeated 13 times, from different approaching directions. The user
was instructed to move the hand until the contact with the object, and then to react by
adapting the hand/wrist pose w.r.t. the object. Poses of the hand were recorded through
a PhaseSpace motion tracking system. We subtract from the hand evolution recorded
between the contact and the grasp (T represents the time between them) the posture
of the hand during the contact. The resulting function Δi : [0, T ] → R

7 describes
the rearrangement performed by the subject to grasp the object. Acceleration signals
α1 . . . α13 : [0, T ] → R

5 were measured too through the IMUs. To transform these
recordings into a local adaptation strategy, we considered the acceleration patterns as
a characteristic feature of the interaction with the object. When the Pisa/IIT SoftHand
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touches the object, IMUs read an acceleration profile a : [0, T ] → R
5. The triggered

sub-strategy is defined by the local rearrangement Δj , with

j = argmax
i

∫ T

0

aT(τ)αi(τ)dτ . (11)

When this motion is completely executed, the hand starts closing until the object is
grasped.

We extensively tested the proposed architecture with 20 objects, different than the
ones used for the training of the network. Results demonstrated that this approach is
very reliable, achieving a success rate of 81.1% over 111 grasps tested, thus demon-
strating that taking inspiration from humans can provide very interesting solutions for
classic and novel problems toward a new generation of anthropomorphic robots.
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