2010.05708v1 [cs.SE] 12 Oct 2020

arxXiv

Rooting Formal Methods
within Higher Education Curricula

for Computer Science and Software Engineering
— A White Paper —

Antonio Cerone!, Markus Roggenbach?, James Davenport?, Casey Denner?,
Marie Farrell®, Magne Haveraaen®, Faron Moller?, Philipp Kérner”, Sebastian
Krings®, Peter Olveczky?, Bernd-Holger Schlingloff'?, Nikolay Shilov!!, and
Rustam Zhumagambetov!?

! Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Swansea University, United Kindom
m.roggenbach@swansea.ac.uk

3 University of Bath, United Kingdom;
4 Swansea University, United Kingom;
® University of Manchester, United Kingdom;
6 University of Bergen, Norway:;
7 Heinrich-Heine-Universitit, Germany;
8 Niederrhein University of Applied Sciences, Germany;
9 University of Oslo, Norway;
10 Humboldt-Universitit zu Berlin, Germany;
' Tnnoplolis University, Russia;
12 Nazarbayev University, Nur-Sultan, Kazakhstan

Abstract. This white paper argues that formal methods need to be
better rooted in higher education curricula for computer science and
software engineering programmes of study. To this end, it advocates
— improved teaching of formal methods;
— systematic highlighting of formal methods within existing, ‘classical’
computer science courses; and
— the inclusion of a compulsory formal methods course in computer
science and software engineering curricula.

These recommendations are based on the observations that
— formal methods are an essential and cost-effective means to increase

software quality; however
— computer science and software engineering programmes typically fail
to provide adequate training in formal methods; and thus
— there is a lack of computer science graduates who are qualified to
apply formal methods in industry.
This white paper is the result of a collective effort by authors and par-
ticipants of the 1st International Workshop on Formal Methods — Fun
for Everybody which was held in Bergen, Norway, 2-3 December 2019.
As such, it represents insights based on learning and teaching computer
science and software engineering (with or without formal methods) at
various universities across Europe.

http://arxiv.org/abs/2010.05708v1

1 Introduction

The greatest contribution that universities make to industrial practices is
through releasing legions of graduates every year. When properly equipped with
a scholarly education, these graduates challenge established processes and pave
the way for new approaches. In the increasingly-digital world we live in, the
scope for this is arguably greatest in the software industry, particularly given
that the public perception — and indeed the reality — is that software is inherently
unreliable.

Advances in digital technology take place at an astronomical rate, unfettered
by regulations which would hinder progress in other scientific endeavours. There
are generally few established principles in place to ensure that new software
systems are as reliable as, say, a new vaccine. Software engineers demonstrate
success in their company by releasing systems which, for almost all intents and
purposes, appear to work. Because of the benefits these advances offer society,
the public are generally accepting of — and, indeed, used to — software failures.

This situation persists in spite of the fact that computer science and software
engineering research has developed a multitude of design principles which could
help to improve software quality [Barll]. It has been over half a century since
Robert Floyd’s seminal paper [Flo67] set out the means by which computer pro-
grams could be analysed to determine their functional correctness, and formal
methods for developing correct software have been steadily devised and refined
ever since. The typical computer science or software engineering graduate, how-
ever, leaves university with little or no knowledge of formal methods, and even
a dislike for whatever formal methods they have encountered in their studies.
Thus, rather than opening doors for formal methods in (software) industry, uni-
versity education seems to have a detrimental effect.

Due to their ubiquity, software failures are overlooked by society as they tend
to result in nothing more serious than delays and frustrations. We accept as mere
inconvenience when a software failure results in a delayed train or an out-of-order
cash machine or a need to repeatedly enter details into a website. However, the
problems of systems failures become more serious (costly, deadly, invasive) as
automatic control systems find their way into virtually every aspect of our daily
lives. This increasing reliance on computer systems makes it essential to develop
and maintain software in which the possibility, and probability, of hazardous
errors is minimised. Formal methods offer cost-efficient means to achieve the
required high degree of software quality.

A major reason that students (and, in turn, software engineers) have a nega-
tive attitude towards formal methods is that these are not introduced with due
care during the early stages of higher education. Left to the theoretical computer
science professor, such courses often start with fearful terms like state machine,
logical inference, mathematical semantics, etc., without providing elementary
explanations of the basic notions which relate these to the practice of software
development. In their defence, formal methods professors often find it difficult
to deliver the subject due to students’ scepticism [Zhu20], which arises from the
generally limited or non-existent exposure to formal methods in the rest of the

curriculum. Boute [Bou09] and Sekerinski [Sek06] observe that limited references
from other subjects and isolated use are the main factors leading to students’
low opinion. Even worse, students perceive formal methods to be unsuitable for
actual software engineering [BDK 06| or even an “additional burden” [BLAT09].
In this white paper we analyse what hinders a successful formal methods
education, and make constructive suggestions about how to change the situation.
We are convinced that such changes are a prerequisite for formal methods to
become widely accepted in industry. We analyse the current situation of formal
methods teaching and explore ways which we think will be engaging for students
and practitioners alike. Our vision is that formal methods can be taught in such
a way that both students and lecturers will enjoy formal methods teaching.
This white paper is the result of a collective effort by authors and participants
at the 1st International Workshop “Formal Methods — Fun for Everybody”,
which was held in Bergen, Norway, 2-3 December 2019. At the workshop, there
were several discussion sessions. Based on these, the two lead authors devised a
paper outline, which was subsequently “populated” with text snippets written
by all authors. The resulting draft was carefully edited, and agreed upon by all
authors. By its very nature, this white paper offers a spectrum of opinions, in
particular in the personal statements. What unites us are the following beliefs:

— Current software engineering practices fail to deliver dependable software.

— Formal methods are capable of improving this situation, and are beneficial
and cost-effective for mainstream software development.

— Education in formal methods is key to progress things.

— Education in formal methods needs to be transformed.

In Section 21 we analyse the challenges in teaching formal methods. In
[Section 3 we collect ideas about how to teach formal methods — the fun way. In
[Section 4] we discuss how to increase the visibility of formal methods throughout
the curriculum. In[Section 5l we suggest a syllabus for a compulsory formal meth-
ods course. Finally, we discuss how to assess such teaching efforts in [Section 6l
before making concluding remarks in Section 71

2 Challenges in teaching formal methods

Teaching of formal methods faces a number of challenges. Currently, as a knowl-
edge area, formal methods are virtually absent from curricula in computer science
or software engineering. Formal Methods barely appear in the ACM/IEEE 2014
Software Engineering Curriculum, and indeed the development of formal specifi-
cations is explicitly deemed to be inappropriate for a capstone project [ACMI15]
p. 56]. Moreover, many students have an incorrect perception of what formal
methods are about. Formal methods neither make the headlines nor are a pop-
ular topic in social networks, nor are they visibly used by industry. It is also
the case that colleagues as well as students have misguided ideas concerning the
mathematical background required to utilise formal methods. In the following,
we elaborate on these topics. The section concludes with personal statements.

We begin our discussion by providing a working definition, cf. [RCST20], of
what a formal method might be.

Definition 1. A formal method M can be seen to consist of the three elements
syntax, semantics, and method:

— Syntax: the precise description of the form of objects (strings or graphs)
belonging to M.

— Semantics: the ‘meaning’ of the syntactic objects of M, in general by a map-
ping into some mathematical structure.

— Method: algorithmic ways of transforming syntactic objects, in order to gain
some insight about them.

A typical example of a formal method is the process algebra CSP: its syntax
is given in form of a grammar; there are various formal semantics (operational,
denotational, and axiomatic ones); and there are proof methods for refinement
via model checking and theorem proving.

Applying this definition, e.g., to the programming language Pascal, we see
that it also qualifies as a formal method. It has a defined syntax and formal
semantics; and each compiler and static analyser provides a method, the Hoare
calculus would be another instance of a method.

UML on the other hand does not qualify as a formal method. The syntax is
largely fixed via meta models, and there are various methods available, e.g., for
code generation (e.g., from class diagrams or state machines). However, proposed
semantics for UML contain several critical “variation points” and has — to the
best of our knowledge — never been fully formalised.

2.1 On the absence of formal methods from computer science and
software engineering curricula

Anecdotal evidence suggests that current computer science and software engi-
neering curricula rarely cover formal methods to a large extent. We exemplify
this observation by providing an historic perspective on programming education,
an element central to all curricula.

In the late 1980s, Pascal was a dominant teaching language for beginning pro-
gramming students. Pascal is a small, structured programming language with a
syntax designed to be easy to parse [ISO90]. Most textbooks of the time pre-
sented the Pascal language using syntax diagrams, alerting the students to the
idea of context free grammars, e.g., [CC82]. The element of syntax was taught as
an integral part of programming. Some textbooks included the entire ISO Pascal
standard, thus making the students aware of language definition documents.

13 Pattis [Pat94] even suggested teaching Extended Backus-Naur Form (EBNF) as the
first topic in computer science. Not to facilitate presenting the syntax of a program-
ming language, but because EBNF is a microcosm of programming. With no prereq-
uisites, students are introduced to a variety of fundamental concepts in programming;:
formal systems, abstraction, control structures, equivalence of descriptions, the dif-
ference between syntax and semantics, and the relative power of recursion versus
iteration.

For those specifically interested, Pascal had a widely available formal seman-
tics [HWT3]. Robust programming, i.e., checking preconditions, was an essential
part of programming courses. Some universities would even have space for a
formal methods course, typically based on Hoare logic, in their undergraduate
curriculum: i.e., a formal method was taught.

About 20 years ago, Pascal was superseded by Java as the dominating
teaching language. Java is a much more complex language than Pascal; it sup-
ports object-oriented development, and it has large support libraries. Thus, in
the transition to Java, precise syntax and semantics was replaced by a more
example-driven approach, e.g., [DDQT], where the first half contains similar ma-
terial to [CC82]. Verification tools such as Java Pathfinder] rarely made it into
the syllabus of a programming course. Instead, students needed to learn more
methodology, such as object-orientation, test-driven design and agile methods.
All of this reduces the students’ exposure to formality, such as formal syntax
or precise semantic, making the gap to formal methods larger. Further, the
pragmatics of software development take up more of the curriculum, leaving less
space for a formal methods course in the core curriculum. Dewar and Schonberg
support this critical assessment: “It is our view that Computer Science education
is neglecting basic skills, in particular in the areas of programming and formal
methods. We consider that the general adoption of Java as a first programming
language is in part responsible for this decline.” [DSI§]

In recent years, Python has emerged into a common teaching language for
programming. The move towards Python represents a change back to a much
smaller language than Java. The Python reference document is just 160 pages,
and its formal grammar is only four pages [vRtPdt20]. This should make it
possible to at least expose the students to formal syntax and a standardisation
document. However, the typing and semantic model of Python remains complex,
and is not easily formalised.

Thus, while current programming education based on Java often fails to
provide foundations for formal methods by discussing syntax and semantics, the
move towards Python provides the silver lining that the element of syntax might
again become a part of standard education in programming.

2.2 Students’ perception of formal methods

The reduced exposure to formal approaches, as described in Section 2.1l supports
university students’ misconception that formal methods are a difficult topic with
little or no practical relevance. This keeps students away from formal methods
during their undergraduate studies. Even worse, it leads them to embrace the
common belief that mathematics and computer science are two independent,
fully distinct disciplines. Computer science is rather identified with program-
ming, which, in turn, is seen more like an art rather than a scientific activ-

4 https://github.com/javapathfinder/jpf-core/wiki
!5 The recent The Java® Language Specification, Java SE 14 Edition is 800
pages [GJST20] and not easily digestible.

https://github.com/javapathfinder/jpf-core/wiki

ity [CL20]. Interestingly, this view has even been supported not only by the prag-
matic evolution of programming languages outlined in the previous paragraphs,
but also by some academic publications claiming that rigorous mathematical
knowledge is not necessary for computer science practitioners [Gla00]. Finally,
this view has been paradoxically encouraged by the introduction of computer
science in high schools. In fact, although in several schools computer science has
been introduced as a stand-alone subject, it is not connected with mathematics
but, instead, it is presented as a ‘service subject’ intrinsically tied to the use of
computers. Scope of the subject is to provide tools that facilitate students in
carrying out their homework and class projects [Cer20/Gib0§].

Although we can say that, on average, a typical computer science student
tends to have a negative perception of formal methods, in reality lecturers ob-
serve a lot of variation between students, as well as changes of perceptions in one
direction or the other. Variations in students can be observed starting from the
first programming courses. A slightly exaggerated categorisation goes as follows.
On the one hand, there are students who tackle programming in a purely ‘artis-
tic way’ by sitting down at the computer and writing code immediately, using
debugging rather than problem solving to reach the solution. On the other hand,
there are students who start analysing the problem using pen and paper, then
draw diagrams, possibly write pseudo-code, test their solution on paper and,
only when they are confident in their solution, they sit in front of a computer
and convert their solution into a program. Obviously, it is the latter approach
what lectures suggest. Normally, the former group of students tend to have a
negative perception of formal methods, whereas the latter group tend to have a
positive one. This partition of the students in two groups appears more evident
once recursion is introduced in the programming course. The former group of
students will tend to hate recursion, the latter group will tend to love it.

These two opposite perceptions obviously occur in several degrees. More-
over, they are not static but, at least potentially, dynamic and may be either
encouraged or hindered in various ways throughout the course of undergraduate
studies. The common absence of formal semantics among the topics of program-
ming courses definitely keeps students away from an early exposure to formal
methods and prevents them from really understanding what formal methods are.
Being exposed to some basic operational semantics could actually help students
to better understand conditional and iterative constructs, which are normally
serious challenges for first year students. Furthermore, recursion could be better
understood, thus providing the basis for a future interest in formal methods.

Concerning senior students, although for some of them their perception of
formal methods may have been strongly oriented towards the negative side, there
is hope to shift them towards the positive side. Senior students tend to be very
pragmatic and their minds are dominated by the goal of entering the job market
and the industrial world. Therefore they will build a positive perception of formal
methods when presented with their pragmatic and industry-oriented aspects.

2.3 Limited visibility of formal methods in media and industry

How students perceive a knowledge area has many drivers, such as personal
success, like/dislike of certain academic teachers, their grades, etc. But maybe
‘coolness’ is the dominant factor. During their studies, students want to do some-
thing cool, maybe work with AlphaZechE or participate in a hackathon such as
Google’s Hash Code. Students also strive to get ‘cool jobs’, e.g., with Google,
Facebook, Amazon, and the like. Currently, what one might want to call the
‘coolness factor’ of formal methods is rather low. Formal methods make neither
the headlines nor are prominent in social media, nor are they visibly used by
industry.

Besides studying, quite a number of students work on the side for compa-
nies. In these jobs, students often see only small parts of the overall job profile
of a professional computer scientist or software engineer. Many of these side jobs
deal with having a quick and dirty solution for some pressing problem, adapting
software according to customer requests, or building prototypes in order to find
out whether some concept works out. In contrast, mature students, coming back
from industry and getting into university education again, know about the im-
portance of quality assurance. But as they usually were not exposed to formal
methods in their jobs, they are often reluctant to study them.

Luckily, there is some serious uptake of formal methods in industry. The
classic case of a safety-critical industry is railway signalling, as described
e.g. in [GMI3J]. Ligne 14 of the Paris Métro had software built using the
B method [GM13] and has now run for over 20 years without a bug being
reported. The “High Integrity Systems” unit of Altran develops systems for,
e.g., the railway signalling industry and air traffic control, as well as tools and
methodologies, such as the SPARK subset of Ada [MCI15]. SPARK 2014 uses
contracts to describe the specification of components in a form that is suitable
for both static and dynamic verification.

Outside the safety-critical industry, a few ‘enlightened’, large information
technology companies are beginning to use formal methods:

— Google is developing an ecosystem for formal analysis tools [SvGJT15].

— Facebook uses “advanced static analysis” as described in [DFLO19].

— Amazon’s use of formal methods is discussed in [NRZ"15.BBCT19|. There
is a more technical description of one component in [CCCT18].

If we look at Facebook, [DFLO19|] reports that, in many cases, “we have grav-
itated toward a ‘diff time’ deployment, where analyzers participate as bots in
code review, making automatic comments when an engineer submits a code mod-
ification”. For their Infer tool, which has its origin in the separation logic work
of [CDOY11], they aim “for Infer to run in 15-20min on a diff on average”.
Similarly, at Altran, an attempt to check source code into the main repository
(the equivalent of git push) generates a requirement to prove the appropriate

16 AlphaZero is the descendant of AlphaGo, the Al that became known for defeating
Lee Sedol, the world’s best Go player, in March of 2016.

contracts, and the verification conditions that ensure, for example, no numeric
overflow. An important requirement here is that this verification be “reasonably
fast”. [BS12] describes their work here as “this changes the qualitative time band
for a large scale industrial project from ‘Nightly’ to ‘Coffee’.” Both Facebook
and Altran argue that the primary purpose of this time requirement is to avoid
‘context switch’ in the developer’s brain.

Further changes could be initiated by academics. “Two-hundred-terabyte
maths proof is largest ever” reported Nature in May 201617 and wrote: “Three
computer scientists have announced the largest-ever mathematics proof: a file
that comes in at a whopping 200 terabytes, roughly equivalent to all the digi-
tized text held by the US Library of Congress. The researchers have created a
68-gigabyte compressed version of their solution — which would allow anyone with
about 30,000 hours of spare processor time to download, reconstruct and verify
it — but a human could never hope to read through it.” The results that triggered
this media interest concerns the Pythagorean Triples Problem. “We consider all
partitions of the set {1,2,...} of natural numbers into finitely many parts, and
the question is whether always at least one part contains a Pythagorean triple
(a,b, c) with a®+b% = 2. For example when splitting into odd and even numbers,
then the odd part does not contain a Pythagorean triple (due to odd plus odd =
even), but the even part contains for example 62 4+ 82 = 102. We show that the
answer is yes when partitioning into two parts, and we conjecture the answer
to be yes for any finite size of the partition.” [HKI7] Such results triggering
media interest could possibly change the situation. Another approach could be
to organise, say, verification competitions at a student level. They would need
to provide a stimulating social environment by being accessible to all students,
and could be supported by elements such as cool prizes and free pizza.

2.4 Students’ mathematical background

The seeming need for a solid mathematical background is often an argument
against teaching formal methods. However, reflecting on the three elements of
a formal method, grasping the syntax of a formal method is not more involved
than understanding the syntax of a programming language: both are given by
grammars. Grammars for formal methods are usually smaller than those for pro-
gramming languages. However, students learn programming languages by trial
and error on a computer, where the compiler/interpreter provides feedback on
syntax errors. As discussed in Section 2] standard programming courses mostly
take an example-driven approach to syntax. In contrast, in formal methods stu-
dents are often presented with a grammar for the syntax. For students, this
often provides the first mathematical hurdld™d. The challenge in formal methods
teaching therefore lies in adopting a more example-driven style when it comes
to syntax.

17 Nature, 26 May 2016.
18 This is not eased by the often poor error messages provided by formal method tools.

https://www.nature.com/news/two-hundred-terabyte-maths-proof-is-largest-ever-1.19990

The semantics of a formal method is inherently mathematical in nature: in
logic it is given in terms of the satisfaction of a formula by a model, process
algebra utilizes structural operational semantics or denotational semantics, etc.

However, in a basic course focused upon the application of formal methods,
it would be enough to point out that such formal semantics exists and to hint
at its nature. The teaching challenge lies in providing an explorative approach
to semantics via tools. In logic, this could follow ideas such as Tarski’s world.
In process algebra, one can explore processes by simulating them. In such a
set-up, students could develop their own formal models and explore them, i.e.,
tools provide students with a similar feedback like running a computer program.
Another idea would be to use a semantics compatible with the programming lan-
guages students are using. For instance in axiom-based testing, the ‘axioms’ can
be interpreted as code in the programming language, thus utilising the students’
programming background.

In an advanced course, in addition to such an explorative approach, the for-
mal semantics itself needs to be presented. This will require a good mathematical
background from the students.

Finally, the method aspect of a formal method is best presented through the
use of a tool that automates the analysis in which one is interested. Running
a tool would not require any mathematical background at all. Understanding
the result of a method applied to a concrete example is usually immediate. An
advanced course would address the mathematical details of why a method is
sound.

These considerations refute the common prejudice that teaching formal meth-
ods requires students to have a profound mathematical background. An explo-
rative teaching approach can make formal methods accessible even to students
who like to program the ‘artistic way’. This is supported by experience reports
such as: “Engineers from entry level to principal have been able to learn TLA+
from scratch and get useful results in two to three weeks” [NRZ™15].

2.5 Personal statements

In the order in which they were contributed, we present a number of personal
statements by the co-authors.

SK. One challenge in teaching formal methods is to spark an initial interest.
This is the case, because links are weak between formal methods and the current
hot topics in computer science. Many students steer towards what currently is
perceived to dominate the future: data science and artificial intelligence, to name
a just a few.

To overcome this, the formal methods community should strive to demon-
strate its relevance, beyond ‘classical’ topics such as railway engineering. Cor-
rectness is as relevant in the new, upcoming areas of computer science as it is in
the classical ones.

PK. A similar thought adding to SK: many students do not even have a clear idea
of what formal methods are! They have heard of other areas such as machine
learning, databases, operating systems, computer networks, compiler construc-
tion, and have an idea what is going on there. It’s hard to encounter many
aspects of formal methods in daily programming life, especially for a student
with a limited view. So, why exactly would they pick a ‘no-name’ course such
as “formal methods” or “model checking” over the other choices?

¢D. The name of a course makes a big difference: students tend to avoid courses
that already sound complicated (i.e. anything math or formal) in contrast to
courses that sound ‘useful’ or ‘applicable’ or even just trendy. As a student, I
had a course named “Modelling Computer Systems” that was on discrete mathe-
matics. If it had been called “Discrete Mathematics”, I'm sure it would have put
several students on edge to begin with. Courses with names that contain tech
buzzwords may also sound more appealing to students, such as cyber security,
software testing, machine learning, artificial intelligence etc. We should consider
these trendy subjects and adjust formal methods to be just as appealing, even
if it means slightly adjusting course names.

MF. The lack of reliable tools that are suitable for teaching formal methods, as
well as are scalable enough to demonstrate interesting and realistic use cases,
creates a barrier for students. Throughout our course, we used a number of
freely available formal methods and students struggled to understand the error
messages and other feedback from the tools [FW20]. This kind of ambiguous
feedback causes the students to lose interest and prevents them from engaging
with the tools in a positive, constructive way. Furthermore, this usability issue
also hinders the uptake of these tools in industry. This is somewhat of a vicious
circle. Admittedly, most formal method tools are academic in nature and thus
often are aimed at being good for publication. Better error messages and the
like are often not prioritized that way. This causes the industrial uptake to miss,
which decreases the focus again.

2.6 A student’s personal statement

RZ. My first introduction to formal methods was during my second year (right
after introductory programming courses but before software engineering) in the
GPU computing course. We used Petri nets for modelling the classic dining
philosophers’ problem. One of the motivations for using them was to avoid soft-
ware failures. By providing a mathematical proof with Petri nets, so the professor
claimed, we would be on course for success. At that time formal methods looked
to me like an advanced technique in software development and a usual practice.
My illusions were shattered later when another professor pointed out that it
takes numerous assumptions for formal methods to work in the real world, and
that often these assumptions do not apply.

10

3 Teaching formal methods — the fun way

In this section we collect a number of personal views and ideas on how teaching
formal methods can be done the fun way. While some authors, see, e.g. [CRST15],
have written systematic accounts of the topic, here we present a number of
personal statements in the order in which they were contributed.

MF. Games can be useful when it comes to teaching formal methods in the
initial stages. However, to adequately demonstrate the importance of formal
methods there must also be an emphasis on building and verifying software and
not just on solving a puzzle, as entertaining as that may be. Of course, computer
science students will find enjoyment in building systems, otherwise they would
not be studying the subject. So, perhaps setting them the task of developing
and verifying a simple, but realistic, model of a system would also be beneficial
while encouraging them to have fun with formal methods. In this setting, games
would ideally be placed at the beginning of the course as a light-weight and fun
introduction.

JD. It is often difficult to motivate formal methods. Most students will not go
into the construction of safety-critical systems, important though they are. Also,
the specialist safety-critical companies tend to do their own training (though
they would really like to have to do less!). It is perhaps easier to motivate formal
methods with more common examples. The Chromium Pro jec is one example
of ‘mainstream’ software, viz. browsers, and shows that the Chromium team is
moving ‘more formal’.

sK. Usually, what makes any course interesting is the applications and the trans-
fer of knowledge from classroom to reality. However, most formal method courses
rely on examples that, while interesting, are far away from what students can
experience and experiment with. We often rely on examples from industry and
spend quite a lot of time explaining what a particular model is supposed to
achieve exactly. I feel this often distracts students. Rather than focusing on
what formal methods have to offer, we get lost in technical details. This is not
the case with games, especially if considering well-known ones. Usually, the rules
are known and (mostly. ...) agreed upon already and we can focus on how a for-
mal method can help us to get them right in our application.

Again, I strongly believe we should get away from the purely theoretical ap-
proach to teaching formal methods to beginners. At least for me, the theoretical
advances in formal methods have always been a means to an end. In order to
appreciate them, one has to experience what it means to try and reach the same
end without them. This however falls short in programming education in general.
Students proceed from smallish group projects to other smallish group projects,
while only seldom have to experience larger refactoring, legacy code, etc. In an
environment like this, formal methods are less useful. Let’s teach our students

19 https://www.chromium.org/Home/chromium-security/memory-safety

11

https://www.chromium.org/Home/chromium-security/memory-safety

what programming is like in reality: 90% of the work is reworking legacy code,
fixing bugs and trying to understand why things are or are not working — by ac-
cident, this is where formal approaches could shine as well. Another aspect that
could make a formal methods course interesting is to involve students in formal
methods research rather than formal methods application. We used to teach for-
mal methods by discussion software issues first and then having students try to
find automatic ways to detect them, leading from simple static analysis ideas to
model checking. The course has been thoroughly documented, also showing that
the approach was highly motivating for students students [KKST9].

Notably, students (at least on the masters level) are able and willing to
do ‘actual research’ in an inquiry-based course, eventually leading to publica-
tions [POKGI19]. The inquiry- or research-based approach has taught students
the internals of model checkers and how they can be efficiently implemented for
prototypical languages.

PK. Shriram Krishnamurthi had a great Keynote at FM’'1929. One of the main
points to take away from that is that tools are a large issue. If you hit students
with a full-blown industrial tool, they get frustrating error messages, because
they have no idea what is going wrong (as the tool is able to understand a larger
part of, e.g., a specification language than the student and raises errors related
to other concepts). While it is nice to see that such tools are used in practice,
they might be the wrong means to learn formal methods.

In Diisseldorf, our group has worked on an approach based on Jupyter note-
books [GL20]. It allows evaluation of smaller expressions or predicates without
a state-based approach, so students can learn and experiment with the logical
foundations of the languag where it is used to solve some logic puzzles). It
can also be used to interact with B machines, so errors in a specification can be
explained and documented in a nicer way (that you can replay). We think that
might resolve some of the issues in teaching (but probably not all).

CcD. Games are important, maybe even essential in teaching formal methods and
making it fun. As a teacher of all ages from 8 years old to university level, I have
found games to be one of the best tools to use when teaching. Students under-
stand games and want to win them, naturally. When you explain to students
that there is a method in which they are either guaranteed to win, or indeed a
method in which the second player cannot win, their interest levels peak! Stu-
dents rush home to play the games against their parents and show off their new
found ability.

Games can also be taught to most age groups. As said in our other paper
in this volume “Appealing to their existing understanding of how the world
works, using puzzles as a medium, students can quickly become comfortable
using mathematical concepts such as labelled transition systems” [MOPD20)].

20 https://wuw.youtube . com/watch?v=UCwyOSHRBi0
2! https://gitlab.cs.uni-duesseldorf .de/general/stups/prob2-jupyter-kernel/-/blob/master/notebooks,

12

https://www.youtube.com/watch?v=UCwyOSHRBi0
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel/-/blob/master/notebooks/tutorials/prob_solver_intro.ipynb

We have had success in asking 11 year olds to draw labelled transition sys-
tems. If we start teaching them sooner, this could act as a base from which we
can build upon to further their understanding later on.

MF. In our experience [FW20] the students found it difficult to bridge the gap
between the theory that was taught during the course (e.g. natural deduction
proofs) and the associated tool support used during the lab sessions (e.g. Coq).
As a result, I am inclined to agree with SK above in that the students need to
see how these methods can work in reality rather than focus too much (although
it is important and should be covered at some level) on the theory.

AC. The use of tools provides a great potential for introducing fun in teach-
ing formal methods. This is particularly true for simulation and model-checking
tools, whose emphasis is in giving “life” to formal specifications rather than
getting involved in the complexity of a formal proof, as it happens, instead,
for theorem-proving tools. Moreover, formal methods can be applied to a large
range of problems, basically any problem, well beyond the domain of computer
science. These give chances to teachers to propose fun problems, such as classical
mathematical puzzles as well as popular games and even video games, and to
learners to select problems that are close to their personal and professional inter-
ests [CL20]. One effective approach consists of providing learners with examples
of formal methods descriptions of video games and inviting them to create formal
models of their favourite video games. More in general, learners may be invited
to define any problem they wish, formally specify /model it and carry out analysis
with the support of tools. It is actually important to blur the distinction between
learner and instructor by letting the learners drive the choice of exercises and use
their creativity to identify and specify potential problems and invent new games.
Blurring such a distinction will also contribute to instill in students a level of
self-confidence that can lead students to carry out “actual research” [POKG19]
and to actively contribute to curriculum development [Zhu20].

We can conclude our discussion on the teacher’s view about fun by saying that
if motivation is the dimension that allows learners to build up interest in formal
methods, fun is actually the essential dimension to keep learners continuously
engaged, thus assuring the retention and possibly increase of their interest over
time [CL20CerT6lRCS™20]. However, it is important that the fun occurs from
the perspective of the student, not the teacher, and, if it is associated with
some form of competition, this much effectively fosters motivation and does not
cause frustration. In fact, nothing could be worse than “fun degenerating into
frustration”, which could be the case when a game that is fun for the teacher is
actually too complex or uninteresting for the students or, especially in the case
of school children, if the outcome of competition is interpreted by the student
as a form of assessment [Cer20)].

NS. Fun, puzzles, games and entertainment in teaching are not the unique ingre-

dients needed to improve formal methods education (more general — computer
science and software engineering education). All these (and something else) are

13

just ways to engage (undergraduate) students with the learning, studying, com-
prehension and mastering of formal methods using curiosity and amusement.
We believe that the experience of individual educators and expertise of research
groups in the field of formal methods popularization deserves a positive atti-
tude from the computer science, software engineering and (even) mathematics
academic community and industry.

Another opportunity (just as an example) is a competitive spirit that is so
appropriate for young people (in particular — for students of computer science
and software engineering departments). International competitions between for-
mal methods tools (e.g. automated theorem provers and satisfiability solvers) are
popular, useful and valuable from the industrial and research perspectives, but
not from the undergraduate education perspective. Unfortunately, competitions
especially designed for (undergraduate) students (like Collegiate Programming
Contes) are still not involved in the education process in general and in formal
methods education in particular. We hope that competitions of this kind may
be used better for engaging students with theory of computer science and formal
methods in software engineering [SY02].

po. I also disagree with the ‘puzzle’/‘games’/‘card tricks’ approach. I do not
think that they show the usefulness and relevance of formal methods. I also use
small games (lots of them!) in my second-year course, up to blackjack, but only
as small “toy examples” to get to know the modeling language and tool. On the
other hand, real industrial applications, as others write here, are too large and
complex to include in beginner’s formal methods courses. A good compromise
that T use (and describe in my FMfun’19 paper) are seminal systems/algorithms
that are the cornerstones of different other domains and, equally important, of
today’s large software systems. For example, 2-phase-commit (while simple) and
Paxos (less so) are still key building blocks in today’s distributed systems. I
include key designs from other courses and beyond, like cryptographic protocols
(modeling and breaking NSKP), distributed transactions (2PC), distributed mu-
tual exclusion, distributed leader election, transport protocols like TCP, ABP,
sliding window, and so on. This shows the relevance of formal methods on many
kinds of systems, and are small enough to easily model and analyze using for-
mal methods, but might still give students (and other professors!) an idea of the
usefulness of formal methods.

One final problem with games/tricks: even if you learn how to apply your
formal method to model and analyze such games, can you then apply your formal
method to a real distributed system such as Paxos or a cryptographic protocol?

I refer to my paper “Teaching Formal Methods for Fun Using Maude” [O1v20]
in this volume for a lengthier exposition of how I think formal methods should
be taught at the undergraduate level.

22 https://icpc.baylor.edu/

14

https://icpc.baylor.edu/

3.1 Summarizing the ideas

It is obviously impossible to establish general criteria to make formal methods
teaching a fun activity. Fun cannot be characterised in an objective way and can
only naturally emerge from the interaction between teachers and students. In
fact, the emergence of fun is affected by the personalities of individual teachers
and students as well as by the interaction context in which such different person-
alities meet in the classroom collaborative environment. Here, different criteria
have been suggested and discussed, including:

— games and puzzles may represent a light-weight and fun introduction to
formal methods;

— there should be an emphasis on building and verifying software for simple,
but realistic, systems;

— teaching should focus on demonstrating that tools work rather than on de-
livering too much theory;

— students are likely to enjoy undertaking actual research activities;

— students should be involved in curricula development.

There is a general view among the co-authors that games and puzzles can
be useful when it comes to teaching formal methods in the initial stages and
represent a light-weight and fun introduction (MF, cD, AC). It is important to
note that this view includes former formal methods students who became formal
methods teachers [MOPD20]. Games may be also associated with some form of
competition (AC, NS), which may be within-class (AC) or in terms of participa-
tion at an international context (NS). Games and puzzles are also a great tool to
start formal methods education early, even by teaching to school level children,
as young as 10-11 (cD, Ac). Competition can also be beneficial in the context
of school children, but should to carefully planned in order to avoid being inter-
preted by the student as a form of assessment, which therefore inhibits rather
than motivates the students [Cer20)].

In addition, there must also be some emphasis on building and verifying
software (MF). However, such a connection with reality should be established
in the right form to keep in line with the fun determined by the game-based
approach. In fact, giving students the task of developing and verifying a simple,
but realistic, model of a system would be beneficial while encouraging them
to have fun with formal methods (MF). However, on the one hand, realistic,
industrial systems are often far away from what students can experience and
experiment with (Sk) and most students will not go into the construction of
safety-critical systems, important though they are (JD). On the other hand, the
specialist safety-critical companies tend to do their own training (JD), which
may provide a very different perspective from what students learn in formal
methods courses. Moreover, focusing on examples from industry is very time
consuming and often involves heavy technical details and, as a consequence, may
be distractive rather than beneficial (Sk). Instead, it might be more effective to
motivate formal methods with more common, but still realistic examples, such
as the Chromium Project (JD).

15

There is a general agreement among the co-authors that students need to see
how formal methods work in reality using tools rather than focusing too much
on the theory (SK, MF, PK, AC, PO). However, making students use industrial
tools may result in heavy frustration. While it is nice to see that such tools are
used in practice, they might be the wrong means to learn formal methods (PK).

An final aspect that could make a formal methods course interesting is
to involve students in formal methods research rather than formal meth-
ods application (sk). In fact, students’ publication are often highly appreci-
ated [POKG19/Zhu20].

4 Increasing visibility of formal methods throughout the
curriculum

In common computer science and software engineering curricula, formal methods
play a minor role. There are at most one or two specialized courses focusing on
teaching formal methods. Often, these courses are only weakly linked to the rest
of the curriculum.

Formal methods fail to link to the current hot topics in computer science
and software engineering, both in teaching and research. In consequence, even
students with considerable interest in software engineering are drawn towards
courses such as data science, machine learning or artificial intelligence. However,
now that artificial intelligence and machine learning techniques find their way
into safety critical systems (such as autonomous cars), correctness considerations
become more important every day.

The ‘winner-takes-all’ nature of today’s software industry (where essentially
one product/service in each category ‘wins’ and makes billions, and other so-
lutions fade away, e.g., Facebook for social media; Google for search engines,
eBay for online auctions, Zoom for online discussions/teaching/meetings) jus-
tifies an upfront investment in system quality. We note that major firms like
Google |SvGJT15], Facebook [DFLOT9|, and Amazon [NRZ™15| are all doing
this, but this has yet to feed through to their hiring practices, or to students’
perceptions of what they need to get a job at these favoured employers.

In consequence, an ideal integration of formal methods into a computer
science or software engineering curriculum should first and foremost strive to
present formal methods as a quality assurance tool to be used in other areas,
be it embedded systems engineering or machine learning. This first contact to
formal methods would aim at teaching usage scenarios as well as techniques and
how they are to be deployed.

We believe that showing the benefit of formal methods by discussing appli-
cations to other areas will achieve two goals. First, it ensures code quality and
system functionality are considered as critical. Furthermore, this initial contact
to formal methods might spark an interest into their development and improve-
ment. Both topics could then be a part of dedicated courses in formal methods.

While such a ‘casual’ approach would be ideal, it would require colleagues
to be willing and to be able to teach small units on formal methods. This might

16

be an unrealistic assumption. Organising ‘guest sessions’ from formal methods
experts might be a way forward.

To gain an acceptance of having more formal methods visibility in a university
curriculum, we need to persuade first and foremost our colleagues. Ultimately
they decide whether/how/how much formal methods a university curriculum
could/must contain. There is huge competition for places on a curriculum be-
tween the different specialties/fields. At least the older colleagues may remember
times when formal methods were not too useful.

The 2013 “Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science” [ACMI13] lists 18 “Knowledge Areas”. In the following, we
make a number of suggestions for formal method units in some of these areas:

AL-Algorithms and Complexity: formal verification of algorithms; model
checking algorithms.

DS-Discrete Structures: logic, modelling, semantic foundations of formal
methods.

HCI-Human-Computer Interaction: mode confusion problems; formal
analysis of user dialogs; cognitive models.

IAS-Information Assurance and Security: formal analysis of security
protocols.

IM-Information Management: specifying and analyzing both the correct-
ness and the performance of cloud storage systems.

NC-Networking and Communication: protocol verification.
OS-Operating Systems: parallel modelling; scheduling.
PBD-Platform-based Development: formal model based development.
PD-Parallel and Distributed Computing: process calculi; Petri nets.
PL-Programming Languages: how to analyse software written in a specific

programming paradigm; compiler correctness; semantics of programming
languages; program correctness.

5 Syllabus of a compulsory formal methods course

Besides increasing the visibility of formal methods throughout all courses and
also having specialised advanced courses on formal methods, we suggest that
curricula for computer science and software engineering should include a com-
pulsory formal methods course.

17

The target audience for such a compulsory formal methods course would be
the complete cohort of computer science / software engineering students in year
2 or year 3 of a 3-year BSc degree programme.

Due to the wealth of available formal methods, we refrain from proposing
a unified or ‘standard’ syllabus. Local expertise in specific formal methods and
application domains should be taken into account. Therefore, we rather capture
the essence of an ideal course in a generic way:

Introduction.

— The role of formal methods in the context of software engineering, see, e.g.,
Roggenbach et. al [RCST20], Chapter 1, for a thorough discussion, and
Barnes [Barll] for a comparative case study.

— Success stories of formal methods, see, e.g., Roggenbach et. al [RCS™20) for a
compilation of such stories, another good source is Section 1.3.4 of Garavel’s
report [GG13];

— Relating formal methods to current trends in computer science, such as ma-
chine learning, where one can use machine learning to improve formal meth-
ods [ALB18], or, a nascent field but one that is growing in importance and
has already attracted the attention of ISO in the draft TR 24029-2, the appli-
cation of formal methods to big data [vdAT6/CamT4/MLMI8] or to machine
learning [HKWIT7ISKSTOWPWT18].

Main Part. The main part should offer one or two formal methods of different
nature, e.g. a “model-oriented” and a “property-oriented” one, cf. [Win90| for
further discussion of this classification; in order to demonstrate the ‘universal-
ity’ of formal methods, it would appear useful to draw examples from different
domains.

The following topics (listed in no particular order) should be covered:

— Modelling: going from the informal to the formal; traceability; validation of
models.

— Language design: explaining how the language of a formal method is designed
for specific purposes (what are essentials necessary for expressivity, what is
syntactic sugar easing the life of the specifier?).

— Semantics: presenting just the essentials — this needs to be one topic among
many rather than the dominating one, as happens too often in current prac-
tice.

— Software engineering context: demonstrating that formal methods are appli-
cable throughout the whole software lifecycle, e.g., in analysing designs, in
software verification, testing from formal models.

— Method: systematically using tools to illustrate the ‘method’ aspect.

— Application domains: illustrate the reach of formal methods by selecting ex-
amples from different application domains. Safety, security, human-computer
interaction, e-contracts, and non-computer areas (biological systems, ecology,
chemistry) are some possible examples.

18

Traditionally, formal methods teaching advocates the use of formal methods
for safety-critical systems. Formal methods are of course super-important
for those systems, but experience in class (and otherwise) suggests that this
does not inspire and is almost counterproductive: most students do not fore-
see themselves designing the quite narrow range of safety-critical systems
we tend to use as example (airplanes, cars, medical devices, etc.); focusing
almost exclusively on safety-critical systems can actually be counterproduc-
tive as it (can be perceived to) send signals that formal methods are only
usable for such systems.

As cybersecurity failures are much in the news, we might look at these and
see how formal methods might have found these (e.g. Heartbleed), or are
being used (e.g. Chromium), as a way of emphasising the mainstream utility
of formal methods.

Conclusion — reflection on formal methods. We present below some items of
reflective nature that ought to be addressed at the end of a formal methods
course.

— General limitations: what formal methods can offer, what formal methods
cannot deliver, e.g., based on Levenson’s provocative article “Are You Sure
Your Software Will Not Kill Anyone?” [Lev20).

— Scalability: why formal methods work on toy examples but their applica-
tion might become impossible for technical reasons when it comes to real
life challenges, see, e.g., [RMS™12] and [JMNT14]. [RMS™12| shows a for-
mal methods in its early stages, where it can barely verify a toy example;
[JMNT14] shows how, after two further years of research, with the help of
abstractions it is possible to verify a real world example with the very same
approach.

— Costs/benefits: what the cost and financial benefits of formal methods
are [Barll]. The key insight “Formal methods are surprisingly feasible for
mainstream software development and give good return on investment.” from
Newcombe et al. [NRZT15] and Amazon’s “We can now use automated rea-
soning to provide inexpensive and provable assurance to customers” from J.
Backes et al. [BBCT19] are probably a ‘must have’!

— Acceptance: current uptake of formal methods in industry and reasons for
the low acceptance.

— Current trends: where one expects the field of formal methods to be in, say,
a decade.

Each lecturer will have her/his own subjective view concerning the above list
of topics. Probably they offer a good point for discussion with students. The
systematic element underlying them is that they ought to be addressed at the
end of a formal methods course.

Learning outcomes. Such a course would provide the learning outcomes that
students

19

— understand the thinking behind formal methods and how it differs from ad-
hoc programming;

— are fluent in the application of one or two formal methods to academic
examples;

— are able to estimate the potential of formal methods with concrete challenges;

— are able to critically compare different formal approaches and choose the
most appropriate for a given, specific application.

6 How to assess our teaching efforts?

Having introduced changes to teaching, it is important to assess if they have
been successful. In this section, we collect a number of ideas as to how this could
be done. In the order in which they were contributed, we present a number of
personal statements.

MF. The obvious measurement is to compare exam results year after year, as-
suming that the same person teaches the course before and after any changes
are made. We are working towards making some changes to our course that we
could compare against the previous years’ results. However, it is also important
to survey the students before and after the course as well as during the lab ses-
sions to really understand how they are progressing and how effective the notes,
teaching and lab sessions are in improving their formal methods expertise.

CD. As a teacher on a Degree Apprenticeship programme, I think one such
method of assessing our own teaching methods, is to actually assess the stu-
dents’ level of understanding by getting them to apply formal methods in their
workplace: students on our programme are employed. Often, when we teach for-
mal methods, our students have never seen them before. We tasked our students
with producing a work-based portfolio where they have to apply discrete mathe-
matics to their workplace. Whilst some students struggle with the task, for most
of them it becomes apparent how beneficial it is in the workplace. Sometimes
it even highlights issues with the existing systems logic. In my opinion this is
the best outcome and therefore would demonstrate that we have been teaching
successfully.

SK. The formal methods community ought to reflect on what it wants to achieve
in teaching. Ultimately, there is no use in being able to enumerate different
formal methods and just being able to use them if you don’t see any reason to
do so. Rather, I am in favour of indeed trying to change (and measure/evaluate)
students’ opinions and attitudes.

Employing a formal approach to software engineering is all about the re-
sulting quality of the product. Thus, a formal methods course needs to change
students’ perceptions about software as a product that is used in different appli-
cations and situations — eventually, even in safety critical ones. Nobody would
cross a bridge that seems like it might collapse. At the same time, delivering

20

software that is known to cease working under certain conditions has become
quite accepted. Once students gain an awareness and consciousness for quality
aspects of software, formal methods (and the effort to use them) will appear
more beneficial.

MR. In my teaching experience, students best learn those topics that they like
to do, that they can try themselves, and that provide them with a feeling of
achievement. For teaching practice in formal methods that means that we ought
to run supporting lab classes. These would offer meaningful examples on which
students can successfully apply a formal method, or explore why some specific
formal method fails. In my view, lab tasks would be well-designed if, say, 80%
of the students can solve them, i.e., offer them a sense of achievement.

The other objective would be to educate the majority of computer science
students in such a way that they are capable of applying formal methods in their
future careers in industry. This could be evaluated by looking at dissertations:
do the majority of them report on the application of formal methods when the
project concerns software development?

PK. One criterion could be the number of students that are interested in writing
their dissertation in the field of formal methods. In particular, our experience is
that while formal methods are not in high demand with students, the ones who
finish our formal methods courses usually are willing to gain an expert level of
knowledge. Many students stay interested, once they have developed an appetite
for formal methods.

AC. Assessing the effect of teaching changes in standard formal methods courses
is a tricky task for a number of reasons:

1. classes are normally small;

2. even within the small group there is often a large variety in background and
interest of the students;

3. although students might be interested and even successful in using formal
methods, in their future research or work goals they are driven by more
trendy areas and topics, where there is little place for the use of formal
methods.

Reason [I] prevents us from collecting enough data to allow us to produce sta-
tistically significant results. It is therefore more important to informally collect
personal opinions from students through discussions, open-ended questionnaires
and interviews, rather than analysing numerical data such as grades and per-
centage of successful students.

Reason 2 requires an initial assessment of the students to be compared with
the final objectives that they achieve at the and of the course (see MF’s statement
earlier in this section). A possible form of initial assessment is a questionnaire
to be administered during the very first course class. The questionnaire should
aim at the assessment of

21

— mathematical background;

— logical and problem solving skills;

— experience with the logic and functional programming paradigms;

— knowledge of the software engineering concepts that are central in formal
methods, such as specification, testing, verification, validation, assurance.

— knowledge of basic logical and set-theoretic concepts such as syntax, seman-
tics, theorem, proof, function and more specific computability concepts such
as decidability, enumerability, undecidability.

— perception of more “exotic” formal methods concepts such as system state
and concurrent system.

Due to Reason 3] looking at dissertations or careers of former students does
not really provide a measure of the achievement of learning objective. In fact,
students’ pragmatics in looking for a thesis topic or choosing their professional
career may clash with their academic interests.

6.1 Summarizing the ideas

Assessment is often an exercise of producing numbers that can be compared
over several academic years. Here, different criteria have been suggested and
discussed, including:

— exam results of a particular course;
— number of dissertations in which formal methods are applied; and
— number of dissertations in the area of formal methods.

AC provided arguments why one should look at such numbers with care.

For teaching a formal method it has been suggested to closely survey students
during the course (MF), and to design lab classes with ‘guaranteed success’, i.e.,
which are barely contributing to a differentiation between students in form of
marks (MR).

A slightly deeper looking approach would be to look at students’ opinions
and attitudes and see how they change over time (SK).

7 Conclusion and outlook

In this white paper, we have analysed why formal methods are seldom promi-
nently included in computer science and software engineering curricula. One
often heard reason for this is that they fail to attract students. However, we be-
lieve that students often just have misconceptions about formal methods. Also,
the ‘coolness factor’ of formal methods is low. Finally, formal methods are not
visibly used by industry. It is a myth that formal methods teaching on a basic
level would require a particularly strong mathematical background. We provided
a number of ideas on how to make formal methods more attractive to students
and gave examples of the uptake of formal methods in industry beyond the
critical systems sector.

22

In the spirit of the workshop “Formal Methods — Fun for Everybody”, this
paper has collected a number of ‘sparkling ideas’ that aim at improving the situa-
tion summarised above. We grouped such ideas into four categories, namely indi-
vidual teaching delivery, cf.[Section 3] making formal methods visible throughout
the syllabus, cf. Section 4] the proposal of a compulsory formal methods course,
cf. and ideas about how to measure the effect of teaching changes, cf.

With this white paper a start has been made to make formal method teaching
more popular. The ideas and arguments presented are ready to be picked up in
order to improve existing courses, to design new courses, and to make formal
methods more prominent in academic curricula. The participants of the 2019
workshop were enthusiastic about this topic, and we hope to have shared some
of this enthusiasm with the reader. Let’s turn this into a wider movement!

References

ACM13. ACM. Computer science curricula 2013: Curriculum guide-
lines for undergraduate degree programs in computer science.
http://dx.doi.org/10.1145/2534860, 2013.

ACM15. ACM. Software engineering 2014: Curriculum guidelines
for undergraduate degree programs in computer science.
https://doi.org/10.1145/2965631, 2015.

ALBI18. Moussa Amrani, Levi Lucio, and Adrien Bibal. ML + FV = Q7 A survey on
the application of machine learning to formal verification. arXiv: Software
Engineering, 2018.

Barll. Janet Elizabeth Barnes. Experiences in the industrial use of formal meth-
ods. In Alexander Romanovsky, Cliff Jones, Jens Bendiposto, and Michael
Leuschel, editors, AVo(CS’11. Electronic Communications of the EASST,
2011.

BBC™19. J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S. Luckow, N. Rungta,
M. Schaef, C. Schlesinger, R. Tanash, C. Varming, and M. Whalen. One-
click formal methods. IEEE Software, 36(6):61-65, 2019.

BDK'™06. H. Brakman, V. Driessen, J. Kavuma, L.N. Bijvank, and
S. Vermolen. Supporting formal method teaching with real-
life protocols. In Formal Methods in the Teaching Lab, 2006.
http://www4.di.uminho.pt/FME-SoE/FMEdO6/Preprints.pdf.

BLA109. Javier Blanco, Leticia Losano, Nazareno Aguirre, Maria Marta Novaira,
Sonia Permigiani, and Gastén Scilingo. An introductory course on pro-
gramming based on formal specification and program calculation. SIGCSE
Bull., 41(2), 20009.

Bou09. Raymond Boute. Teaching and practicing computer science at the univer-
sity level. SIGCSE Bull., 41(2), 2009.
BS12. Martin Brain and Florian Schanda. A lightweight technique for distributed

and incremental program verification. In Rajeev Joshi, Peter Miiller, and
Andreas Podelski, editors, Verified Software: Theories, Tools, Experiments,
pages 114-129, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Caml4. Matteo Camilli. Formal verification problems in a big data world: towards
a mighty synergy. In Proc. of ICSE 2014, pages 638-641. ACM, 2014.

23

http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/2965631
http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf

CC82. Doug Cooper and Michael Clancy. Oh! Pascal. W.W.Norton & Company,
Inc., New York, NY, USA & London UK, 1982.

CCC™18. Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huff-
man, Colm MacCarthaigh, Stephen Magill, Eric Mertens, Eric Mullen,
Serdar Tasiran, Aaron Tomb, and Eddy Westbrook. Continuous formal
verification of Amazon s2n. In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification, pages 430-446, Cham, 2018. Springer
International Publishing.

CDOY11. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. Compositional shape analysis by means of bi-abduction. J. ACM,
58(6):26:1-26:66, 2011.

Cerl16. Antonio Cerone. Human-oriented formal modelling of human-computer
interaction. In STAF 2016 Collocated Workshops (HOFM), volume 9946
of Lecture Notes in Computer Science, pages 232—241. Springer, 2016.

Cer20. Antonio Cerone. From stories to concurrency: How children can play with
formal methods. In FMFun 2019, Revised Selected Papers. In press., Com-
munications in Computer and Information Science. Springer, 2020.

CL20. Antonio Cerone and Karl Reiner Lermer. Adapting to different types of
target audience in teaching formal methods. In FMFun 2019, Revised
Selected Papers. In press., Communications in Computer and Information
Science. Springer, 2020.

CRS'15. Antonio Cerone, Markus Roggenbach, Bernd-Holger Schlingloff,
Gerardo Schneider, and Siraj Ahmed Shaikh. Teaching for-
mal methods for software engineering — ten principles. 2015.
https://www.informaticadidactica.de/uploads/Artikel/Schlinghoff2015/Schlinghoff2015.pdf.

DDo7. P.J. Deitel and H.M. Deitel. Java — How to program. Pearson Education,
Inc., Upper Saddle River, NJ, USA, 7th edition, 2007.

DFLO19. Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W.
O’Hearn. Scaling static analyses at facebook. Commun. ACM, 62(8):62-70,
2019.

DS18. Robert B.K. Dewar and Edmond Schonberg. Computer science educa-
tion: Where are the software engineers of tomorrow? CROSSTALK — The
Journal of Defense Software Engineering, 2018.

Flo67. R.W. Floyd. Assigning meaning to programs. In Mathematical Aspects of
Computer Science, volume 19, pages 19-32. Americal Mathematical Soci-
ety, 1967.

FW20. Marie Farrell and Hao Wu. When the student becomes the teacher. In FM-
Fun 2019, Revised Selected Papers. In press., Communications in Computer
and Information Science. Springer, 2020.

GG13. Hubert Garavel and Susanne Graf. Formal Methods for Safe and Se-
cure Computers Systems. Federal Office for Information Security, 2013.
https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_Methods_Study_875/study_875.html

Gib08. J. Paul Gibson. Formal methods: Never too young to start. In Proc. of
FORMED 2008, pages 151-160, 2008.

GJS*20. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel
Smith, and Gavin Bierman. The Java language specification — Java SE 14
Edition. Technical Report JSR-389 Java SE 14, Oracle America, February
2020.

GL20. David Geleus and Michael Leuschel. Prob and jupyter for logic, set theory,
theoretical computer science and formal methods. In Alexander Raschke,

24

https://www.informaticadidactica.de/uploads/Artikel/Schlinghoff2015/Schlinghoff2015.pdf
https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_Methods_Study_875/study_875.html

Gla00.
GM13.
HK17.

HKW17.

HWT3.
IS0O90.

JMNT14.

KKS19.

Lev20.

MC15.

MLMI18.

MOPD20.

NRZ'15.

Olv20.

Pat94.

POKG19.

Dominique Méry, and Frank Houdek, editors, Rigorous State-Based Meth-
ods, pages 248-254, Cham, 2020. Springer International Publishing.
Robert L. Glass. A new answer to “how important is mathematics to the
software practitioner?”. IEEE Software, 17(6):136-136, 2000.

S. Gnesi and T. Margaria. Some Trends in Formal Methods Applications
to Railway Signaling, pages 61-84. 2013.

Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Com-
mun. ACM, 60(8):70-79, 2017.

Xiaowei Huang, Marta Kwiatkowska, and Sen Wang. Safety verification
of deep neural networks. In Proc. of CAV 2017, volume 10426 of Lecture
Notes in Computer Science, pages 3-29. Springer, 2017.

C. A. R. Hoare and Niklaus Wirth. An axiomatic definition of the pro-
gramming language PASCAL. Acta Inf., 2:335-355, 1973.

IS0 7185:1990 Information technology — Programming languages — Pascal,
1990.

Phillip James, Faron Moller, Nguyen Hoang Nga, Markus Roggenbach,
Steve A. Schneider, and Helen Treharne. Techniques for modelling and veri-
fying railway interlockings. Int. J. Softw. Tools Technol. Transf., 16(6):685—
711, 2014.

Sebastian Krings, Philipp Koérner, and Joshua Schmidt. Experience re-
port on an inquiry-based course on model checking. In Tagungsband des
16. Workshops zu Software Engineering im Unterricht der Hochschulen,
volume 2358 of CEUR, 2019.

Nancy Leveson. Are you sure your software will not kill anyone? Commun.
ACM, 63(2):25-28, 2020.

John W. McCormick and Peter C. Chapin. Building High Integrity Appli-
cations with SPARK. Cambridge University Press, 2015.

Claudio Mandrioli, Alberto Leva, and Martina Maggio. Dynamic models
for the formal verification of big data applications via stochastic model
checking. In Proc. of CCTA 2018, pages 1466-1471. IEEE Comp. Soc.,
2018.

Faron Moller, Liam O’Reilly, Stewart Powell, and Casey Denner. Teaching
them early: Formal methods in school. In FMFun 2019, Revised Selected
Papers. In press., Communications in Computer and Information Science.
Springer, 2020.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. How Amazon web services uses formal methods.
Commun. ACM, 58(4):66-73, 2015.

Peter Olveczky. Teaching formal methods for fun using Maude. In FMFun
2019, Revised Selected Papers. In press., Communications in Computer
and Information Science. Springer, 2020.

Richard E. Pattis. Teaching EBNF first in CS 1. In Proceedings of
the Twenty-Fifth SIGCSE Symposium on Computer Science Education,
SIGCSE 94, page 300-303, New York, NY, USA, 1994. Association for
Computing Machinery.

Jessica Petrasch, Jan-Hendrik Oepen, Sebastian Krings, and Moritz Ger-
icke. Writing a model checker in 80 days: Reusable libraries and custom
implementation. In Proc. of AVoCS 2018, volume 76 of Electronic Com-
munications of the EASST, 2019.

25

RCS'20.

RMS*12.

Sek06.

SKS19.

SvGJt15.

SYO02.

vdA16.

vRtPdt20.

Win90.

WPWT18.

Zhu20.

Markus Roggenbach, Antonio Cerone, Bernd-Holger Schlingloff, Gerardo
Schneider, and Siraj Ahmed Shaikh. Formal Methods for Software Engi-
neering. Springer, 2020.

Markus Roggenbach, Faron Moller, Steve Schneider, Helen Treharne, and
Hoang Nga Nguyen. Railway modelling in CSP||B: the double junction
case study. ECEASST, 53, 2012.

Emil Sekerinski. Teaching the mathematics of software
design. In Formal Methods in the Teaching Lab, 2006.
http://www4.di.uminho.pt/FME-SoE/FMEdO6/Preprints.pdf.

Xjaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal verification of
neural network controlled autonomous systems. In Proc. of HSCC 2019,
pages 147-156. ACM, 2019.

C. Sadowski, J. v. Gogh, C. Jaspan, E. Séderberg, and C. Winter. Tri-
corder: Building a program analysis ecosystem. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 1, pages
598-608, 2015.

Nikolay V. Shilov and K. Yi. Engaging students with theory through ACM
collegiate programming contests. Communications of ACM, 45(9), 2002.
Wil van der Aalst. Process Mining — Data Science in Action. Springer,
2nd edition, 2016.

Guido van Rossum and the Python development team. The Python Lan-
guage Reference — Release 3.8.3. Python Software Foundation, June 2020.
Retrieved 2020-06-15.

J. Wing. A specifier’s introduction to formal methods. ITEEE Computer
23/9, 1990.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. Formal security analysis of neural networks using symbolic intervals.
In Proc. of Sec 2018, pages 1599-1614. ACM, 2018.

Rustam Zhumagambetov. Teaching formal methods in academia: a sys-
tematic literature review. In FMPFun 2019, Revised Selected Papers. In
press., Communications in Computer and Information Science. Springer,

2020.

26

http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf

	Rooting Formal Methods within Higher Education Curricula for Computer Science and Software Engineering — A White Paper —

