
Compositional Analysis of Probabilistic Timed
Graph Transformation Systems�

Maria Maximova (�), Sven Schneider , and Holger Giese

University of Potsdam, Hasso Plattner Institute, Potsdam, Germany
{maria.maximova,sven.schneider,holger.giese}@hpi.de

Abstract. The analysis of behavioral models is of high importance for
cyber-physical systems, as the systems often encompass complex behav-
ior based on e.g. concurrent components with mutual exclusion or prob-
abilistic failures on demand. The rule-based formalism of probabilistic
timed graph transformation systems is a suitable choice when the mod-
els representing states of the system can be understood as graphs and
timed and probabilistic behavior is important. However, model checking
PTGTSs is limited to systems with rather small state spaces.
We present an approach for the analysis of large-scale systems modeled
as probabilistic timed graph transformation systems by systematically
decomposing their state spaces into manageable fragments. To obtain
qualitative and quantitative analysis results for a large-scale system, we
verify that results obtained for its fragments serve as overapproxima-
tions for the corresponding results of the large-scale system. Hence, our
approach allows for the detection of violations of qualitative and quanti-
tative safety properties for the large-scale system under analysis. We con-
sider a running example in which we model shuttles driving on tracks
of a large-scale topology and for which we verify that shuttles never col-
lide and are unlikely to execute emergency brakes. In our evaluation, we
apply an implementation of our approach to the running example.

Keywords: cyber-physical systems, graph transformation systems, qual-
itative analysis, quantitative analysis, probabilistic timed systems, com-
positional analysis, model checking

1 Introduction

Real-time cyber-physical systems often emit a complex behavior based on e.g.
concurrent components with mutual exclusion or probabilistic failures on de-
mand. Consequently, modeling formalisms for capturing such systems must
suitably support the modeling of their complex behaviors. In such a model
driven approach, the analysis of behavioral models w.r.t. a provided specifica-
tion is vital to ensure overall soundness of the resulting system.

� Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 241885098, 148420506.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 196–217, 2021.
https://doi.org/10.1007/978-3-030-71500-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_10&domain=pdf
http://orcid.org/0000-0001-9275-806X
http://orcid.org/0000-0001-9828-618X
http://orcid.org/0000-0002-4723-730X
https://doi.org/10.1007/978-3-030-71500-7_10

border

core
fragment

occurrence
of border

occurrence
of core

occurrence
of fragment

overlapping in border

1 1 2 2 3

1 2 3

Fig. 1: Occurrence of single FT with border and core in LST (left) and five
occurrences of three FTs in LST overlapping in their borders (right).

The rule-based transformation of graphs is a suitable choice when the mod-
els representing states of the system can be understood as graphs. In particular,
the formalism of probabilistic timed graph transformation systems (PTGTSs)
extends the standard rule-based transformation of graphs such that timed and
probabilistic behavior is covered by supporting (a) non-deterministic choice
among steps, (b) probabilistic choice among step results, and (c) steps repre-
senting the passage of time.

A model checking approach for PTGTSs w.r.t. probabilistic metric temporal
properties was introduced in [19]. However, also this model checking approach
is limited to systems with rather small state spaces due to the state space
explosion problem. As a workaround, a selected set of small examples may be
considered hopefully capturing all system-specific challenges to establish trust
that the model exhibits the required safe behavior and that unwanted behavior
is sufficiently unlikely. However, it cannot be excluded that the considered
small examples do not reveal all the threatening behavior.

We present a decomposition-based approach for the analysis of large-scale
systems modeled as PTGTSs to rule out violations of qualitative and quantita-
tive safety properties.

As a first step, we capture the underlying static large-scale topology (short
LST) of a large-scale system as a subgraph that is not changed by graph trans-
formation, describe how a fragment topology (short FT) can be embedded into
such an LST (see the left part of Figure 1), and specify how multiple such em-
beddings of FTs can overlap in their borders (see the right part of Figure 1).

As a second step, based on the decomposition described by such embed-
dings, we construct for each FT an adapted PTGTS. Such an adapted PTGTS
is then ensured to (a) exhibit the same behavior on the non-overlapped part of
the FT (named core) and to (b) simulate all possible behaviors that can happen
for any occurrence of the FT in an LST. To obtain the mentioned simulation,
we include modifications of the rules of the original PTGTS operating on the
border of an FT into the adapted PTGTS. With this direct relationship between
behaviors on the FTs and the LST, we obtain that the likelihood of an unwanted
or forbidden graph pattern in one of the adapated PTGTS is an upper bound
for its likelihood in its embedding in the large-scale PTGTS.

As a last step, exploiting our decomposition to counter the state space ex-
plosion problem, we apply the model checking approach from [19] to the PT-

Compositional Analysis of PTGTSs 197

GTSs constructed for the FTs employing its reduction to probabilistic timed
automata (PTA) instead of applying the model checking approach directly to
the PTGTS modeling the large-scale system.

To illustrate our approach, we consider a running example in which we
model shuttles driving on tracks of an LST and for which we verify that shut-
tles never collide and are unlikely to execute emergency brakes. In our evalu-
ation, we apply an implementation of our approach to the running example.

The idea to decompose a system into subsystems or to compose it from sub-
systems for the analysis has been studied intensively [25] but our suggested
compositional approach has distinguishing characteristics. Firstly, the vast ma-
jority of approaches (like process algebras or similar models) assume that the
modeling formalism supports the composition/decomposition as a first class
concept such that compositional analysis techniques are directly applicable as
the subsystem models cover all possible behaviors in all contexts. In contrast,
we do not rely on a built-in decomposition operator but rather allow for a
flexible derivation of an LST decomposition in terms of FTs, overlappings, and
a suitable overapproximation on the border, which are not predefined by the
modeling formalism.

Secondly, several approaches rely on a protocol-like specification of how
the decomposed subsystems interact, while in our approach the overapprox-
imation is derived systematically from the PTGTS model that does not nec-
essarily provide such a protocol-like specification already. The compositional
analysis approach for graph transformation systems (GTSs) from [24, 11] de-
fines explicit interfaces, which are used to consider whether the behavior of
two independent graphs glued via these interfaces (requiring that local tran-
sitions are compatible) cover jointly all global transitions. Moreover, in further
approaches, protocols for the roles of collaborations and ports of components
have been assumed. For example, in [14], the idea to overapproximate the
environment and border is explored for timed automata with explicit mod-
els of the roles in form of protocol automata. This idea has been combined
with dynamic collaborations in [12, 13] captured by timed GTSs (TGTSs) and
their analysis via inductive invariant checking [3, 4]. Later on, this approach
has been extended to role, component, and collaboration behavior, which is
captured by TGTSs and hybrid GTSs in [5] and [2], respectively. However, as
opposed to the presented approach, in all these cases an explicit concept of
interface is assumed to separate parts that are analyzed in isolation.

This paper is structured as follows. In section 2, we introduce our running
example from the domain of cyber-physical systems. In section 3, we recapit-
ulate the necessary preliminaries related to PTA and PTGTSs also presenting
the modeling of our running example. In section 4, we discuss the decompo-
sition of static substructures of large-scale systems. In section 5, we present
our decomposition-based approach allowing to split the model checking prob-
lem into more manageable parts. In section 6, we present an evaluation of the
conceptual results for our running example. Finally, in section 7, we close the
paper with a conclusion and an outlook on planned future work.

198 M. Maximova et al.

2 Running Example

We now informally introduce a scenario (based on the RailCab project [23]) of
autonomous shuttles driving on an LST, which serves as a running example in
the remainder of this paper. Based on this introduction, we will discuss how
we model this shuttle scenario as a PTGTS in the next section.

In the considered shuttle scenario, a track topology containing a large num-
ber of tracks of approximately equal length is given. Tracks are connected to
the adjacent tracks via directed connections building in this manner track se-
quences. Two track sequences can be joined together (i.e., can end up in a
common track with two predecessors) leading to a join fragment topology (see
FT8 in Figure 4a) or can split up from a common track (i.e., a common track
has then two successor tracks) leading to a fork fragment topology (see FT7

in Figure 4a). Moreover, depots may have a directed connection to a track
allowing shuttles to enter or exit the track topology. Shuttles, which are al-
ways located on a single track, may be in mode DRIVE, STOP, or BRAKE.
Being in mode DRIVE, shuttles drive to the next track (respecting the direc-
tion of the connection between the tracks) with a certain velocity, which may
be slow ([3, 4] time units per track) or fast ([2, 3] time units per track). Regu-
larly, shuttles change into mode STOP, which allows them to avoid coming too
close to other shuttles. Moreover, shuttles should slow down before entering
a track with a construction site on it. However, shuttles noticing the construc-
tion site too late have to execute an emergency brake thereby changing into the
mode BRAKE. To reduce the likelihood of such emergency brakes, yellow traf-
fic lights are installed a few tracks ahead of such construction sites to indicate
to shuttles that they should slow down. After construction sites, green traffic
lights may be installed permitting shuttles to increase their velocity. However,
we also consider failures on demand where a traffic light that is passed by a
shuttle is not recognized or, for some other reason, not appropriately taken
into account by the shuttle. We assume a failure probability of 10−6 for this
case assuming that the failure does not only depend on the visual observation
by the train driver but also depends on a failure of the backup system.

In our running example, static elements are the tracks, depots, installed
traffic lights, and construction sites as well as connections between these el-
ements. The PTGTS modeling the behavior of the described scenario never
changes this underlying LST. Complementary, dynamic elements are shuttles,
their attributes, their connections to tracks of the LST as well as the attributes
of traffic lights. Note that we use later a grammar to generate admissible LSTs.

For the considered shuttle scenario, we are interested in various properties.
Firstly, we need to verify that the behavior of the system never gets temporally
stuck in a state where no steps (discrete steps of e.g. driving shuttles or timed
steps) are enabled. Secondly, we need to verify whether the rules have been
constructed in a way ensuring the absence of collisions between shuttles (i.e.,
two shuttles should not be on a common track). Thirdly, emergency brakes
should be improbable at a local level for a single shuttle but also at the global
level for the entire LST and its possible numerous number of shuttles.

Compositional Analysis of PTGTSs 199

:Shuttle
mode:string
minDur:real

:Track
id:int
clockDrive:real

:TLYellow
active:bool

:TLGreen
active:bool

:ConstructionSite

TG

:Depot

:next

:at

:at:at :in

:out

:at⊥

(a) Type graph

INVdriving

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
clockDrive=d1

e1:at
m1 = DRIVE
∧ d1 > minD1 + 1¬∃ ,�

(b) Invariant

L K R

G G′ G′′

� r

g1 g2

m m′ m′′

(c) DPO diagram

�0 �3
c0 ≥ 1 1; {c0}

�1

c0 ≥ 0

1; {c0}

�2

c0 ≥ 2

0.5; {c0}
0.5; {c0}

c0 ≤ 5; ∅

c0 ≤ 3; ∅ �; {done}

�; ∅

(d) Example of a PTA

APunexpectedVelocity

S1:Shuttle
minDur=minD1

minD1 �= 2
∧minD1 �= 3∃ ,�

APcollision

T1:Track
S1:Shuttle

S2:Shuttle

e1:at

e2:at
∃ ,�

APbraked

S1:Shuttle
mode=BRAKE∃ ,�

(e) Atomic propositions

L

r1 r2

a′1 = ⊥∧ unchanged(minD1, tid1)

[failure] reset: ∅, probability: 10−6

a1 = � guard: �, priority: 1, stepLabel: (minD1, tid1)

S1:Shuttle
minDur=minD1

T1:Track
id=tid1

Y1:TLYellow
active=a1

e1:at e2:at

R1 = L
minD′

1 = 3 ∧ a′1 = ⊥∧ unchanged(tid1)

[success] reset: ∅, probability: 1 − 10−6
R2 = L

(f) The rule SetSlow: a shuttle may successfully decrease its velocity by setting its time
per track to [3, 4] (where only the lower end of the interval is stored in the graph)
with probability 1 − 10−6 or may fail to decrease its velocity with probability 10−6.
Setting the active attribute to ⊥ ensures that the rule cannot be applied twice.

m1 = DRIVE ∧ minD1 = 2 ∧ m′
1 = BRAKE ∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)

�

S2:Shuttle

T2:Track

e5:at¬∃ ,� S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

CS:ConstructionSite
e1:at
+

e3:ate2:next

e4:at⊕

(g) The rule ConstructionSiteBrake: a shuttle with high velocity ([2, 3] time units per
track where only the lower end of the interval is stored in the graph) needs to execute
an emergency brake to ensure that the track with a construction site on it is not
entered with a too high velocity.

Fig. 2: Details for our running example, DPO diagram, and PTA example.

200 M. Maximova et al.

m′
1 = DRIVE ∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (m1, minD1, tid1, tid2)

�

CS:ConstructionSite T2:Track
e5:at¬∃ ,�

S2:Shuttle
mode=m2

T4:Track T2:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,�

S2:Shuttle T3:Track
e5:at∧¬∃ ,�

S2:Shuttle
mode=m2

T4:Track T3:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,�

S2:Shuttle T2:Track
e5:at∧¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

T3:Track
e1:at
+

e2:next e3:next

e4:at⊕

(a) The rule Drive: a shuttle may drive to the next track where the application condi-
tion is used to rule out situations that on the next track is a construction site or that
the considered shuttle comes too close to another shuttle.

m′
1 = DRIVE ∧ minD′

1 = 2 ∧ unchanged(tid1)

guard: �, reset: {d′1}, priority: 0, stepLabel: (tid1)

�

T3:Track T1:Track
e3:next¬∃ ,�

S2:Shuttle T1:Track
e3:at∧¬∃ ,�

S2:Shuttle T2:Track
e3:at∧¬∃ ,�

S1:Shuttle
mode=m′

1
minDur=minD′

1

⊕ T1:Track
id=tid1
clockDrive=d1

T2:Track
e1:nexte2:at

⊕

(b) The rule DriveEnterFast: adaptation of the rule Drive for the case that a new shuttle
enters the current fragment topology with a high velocity (the similar rule for a shuttle
with a low velocity has been omitted here for brevity) from a context track belonging
to another fragment topology.

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)m′
1 = DRIVE ∧ unchanged(minD1, tid1, tid2)

�

T2:Track T3:Track
e4:next¬∃ ,�

S2:Shuttle T2:Track
e4:at∧¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

T1:Track
id=tid1
clockDrive=d1

T2:Track
id=tid2
clockDrive=d2

e1:at
+

e2:next

e3:at⊕

(c) The rule DriveExit1: adaptation of the rule Drive for the case that a shuttle drives
onto the last track of the current fragment topology.

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (tid1)unchanged(tid1)

�T1:Track T2:Track
e2:next¬∃ ,�

S1:Shuttle
mode=m1
minDur=minD1

+ T1:Track
id=tid1
clockDrive=d1

e1:at
+

(d) The rule DriveExit2: adaptation of the rule Drive for the case that a shuttle exits the
current fragment topology towards a track belonging to another fragment topology.

Fig. 3: The rule Drive and the three adapted rules DriveEnterFast, DriveExit1,
and DriveExit2 for fragment topologies where parts of the application con-
dition of the rule Drive are omitted due to the overlay specification of the
running example.

Compositional Analysis of PTGTSs 201

3 Preliminaries

We now briefly introduce the subsequently required details for graph trans-
formation systems (GTSs) [10], probabilistic timed automata (PTA) [17], and
probabilistic timed graph transformation systems (PTGTSs) [18, 19] in our no-
tation. Along this presentation, we also discuss the modeling details for our
running example from the previous section.

We employ type graphs (cf. [10]) such as the type graph TG from Figure 2a
for our running example. A type graph describes the set of all admissible
(typed attributed) graphs by mentioning the allowed types of nodes, edges,
and attributes. We assume typed attributed graphs in which attributes are
specified using a many sorted first-order attribute logic as proposed in [21]
(the attribute constraint ⊥ (false) in TG means that the type graph does not
restrict attribute values). This approach to attribution has been used to capture
constraints on attributes in graph conditions in [27] and to describe attribute
modifications in [22, 28].

Graph transformation is then performed by applying a graph transforma-
tion rule (short rule) ρ = (� : K L, r : K R) consisting of two monomor-
phisms (i.e., all components of the morphisms are injective). The rule specifies
that the graph elements in L − �(K) are to be deleted, the graph elements in
K are to be preserved, and the graph elements in R − r(K) are to be added
during graph transformation. Such a rule is applied to a graph G for a given
match m : L G resulting in a graph G′′ by constructing the double pushout
(DPO) diagram (see Figure 2c) where the first and the second pushout squares
describe the removal and the addition of graph elements specified in the rule,
respectively. Moreover, a rule may additionally contain an application condi-
tion φ (denoted by ρ = (�, r, φ)) to rule out certain matches specifying e.g.
graph elements that may not be connected to graph elements matched by m.
For further details on the graph transformation approach, we refer to [10].

PTA [17] combine the use of clocks to capture real-time phenomena and
probabilism to approximate/describe the likelihood of outcomes of certain
steps. A PTA such as the one in Figure 2d consists of (a) a set of locations with a
distinguished initial location such as �0, (b) a set of clocks such as c0 (which are
initially set to 0), (c) an assignment of a set of atomic propositions (APs) such as
{done} to each location (for subsequent analysis of e.g. reachability properties),
(d) an assignment of constraints on its clocks to each location as invariants such
as c0 ≤ 3, and (e) a set of probabilistic timed edges each consisting of (e1) a
single source location, (e2) at least one target location, (e3) a clock constraint
such as c0 ≥ 2 specifying as a guard when the edge is enabled based on the
current values of the clocks, (e4) for each target location a probability such
as 0.5 that this target is reached (the sum of all the probabilities for the target
locations of the edge must add up to 1 as a probability distribution is required),
and (e5) for each target location a set of clocks such as {c0} to be reset to 0
when that target location is reached.

States of a PTA are given by pairs (�, v) where � is a location and v is the
variable valuation mapping each clock of the PTA to a real number. Nonde-

202 M. Maximova et al.

terminism arises in PTA since a step for advancing time as well as multiple
steps applying rules may be enabled in a single state. The logic PTCTL [17]
then allows to specify properties such as “what is the worst-case probability
that the PTA reaches a location labeled with the AP done within 5 time units”,
which can be analyzed by the PRISM model checker [16]. For the example
PTA from Figure 2d, the given condition is satisfied with probability 0.75 since
the nondeterminism of the PTA would be resolved (by a so-called adversary)
such that the PTA first takes a step to �1 without letting time pass and then
performs the probabilistic step (up to two times after waiting for not longer
than 2 time units) until it reaches the location �2 labeled with the AP done (the
probabilistic step cannot be taken a third time due to the requirement of at
most 5 time units in the quoted property above).

PTGTSs have been introduced in [18, 19] as a probabilistic real-time ex-
tension of GTSs. It has been shown that PTGTSs can be translated to PTA
and, hence, PTGTSs can be understood as a high-level language for PTA as
discussed below in more detail and can be analyzed using PRISM as well.

Similarly to PTA, a PTGTS state is given by a pair (G, v) of a graph and a
clock valuation. The initial state is given by a distinguished initial graph and a
valuation setting all clocks to 0. In our running example, each attribute of type
clockDrive of a Track node (cf. Figure 2a) represents one clock. Invariants and
APs are specified for PTGTSs by means of graph conditions as in Figure 2b and
Figure 2e, respectively, for our running example. We use the single invariant
INVdriving requiring that shuttles in mode DRIVE cannot be on a track longer
than the value of their minDur (minimal duration) attribute plus 1. Moreover,
we consider three APs to specify properties that we want to analyze later on.
The AP APunexpectedVelocity is used to detect graphs in which a shuttle does not
have an expected velocity of [2, 3] or [3, 4] time units per track where only the
lower end of the interval is stored in the graph in the minDur attribute. The
AP APcollision is used to detect graphs in which two shuttles are on a common
track to capture their collision. Finally, the AP APbraked is used to detect graphs
in which a shuttle has just executed an emergency brake.

PTGT rules of a PTGTS then correspond to edges of a PTA and contain
(a) a left-hand side graph L, (b) an attribute constraint on the clock attributes
contained in L to capture a guard, (c) a natural number describing a priority
where higher numbers denote higher priorities, and (d) a nonempty set of tu-
ples of the form (� : K L, r : K R, φ, C, p) where (�, r, φ) is an underlying
GT rule with application condition φ1, C is a set of clock attributes contained
in L to be reset, and p is a real-valued probability from [0, 1] where the prob-
abilities of all such tuples must add up to 1. See Figure 2f, Figure 2g, and
Figure 3a for three PTGT rules SetSlow, ConstructionSiteBrake, and Drive from
our running example where the last two PTGT rules have a unique underlying
GT rule with probability 1 and where the first PTGT rule has a higher priority
as well as two underlying GT rules with probabilities 10−6 and 1 − 10−6. For
the PTGT rules ConstructionSiteBrake and Drive, we depict the graphs L, K, and

1 The underlying GT rule may not delete or add clock attributes.

Compositional Analysis of PTGTSs 203

R in a single graph (subsequently called LKR-graph) where graph elements to
be removed and to be added are annotated with + and ⊕, respectively. In the
PTGT rule SetSlow, no graph elements are removed or added (i.e., the graphs
L and R of the underlying GT rules coincide). Nevertheless, for this PTGT
rule, we depict the two right-hand side morphisms r1 and r2 as they describe
PTGT steps with different attribute modifications and probabilities. Also, the
PTGT rules ConstructionSiteBrake and Drive have application conditions, which
are depicted left to the � symbol or above the � symbol. The attribute precon-
ditions and attribute modifications are given for each PTGT rule in the red
box below the LKR-graph (or are split into multiple red boxes as for the PTGT
rule SetSlow). In these attribute preconditions and attribute modifications, un-
primed (primed) variables denote the values of attributes before (after) GT
rule application. Note that if variables are not changed by the GT rule appli-
cation, we denote this using the operator unchanged (see e.g. Figure 2g where
unchanged(minD1, tid1, tid2) denotes that the variables minD1, tid1, and tid2 re-
main unchanged). Moreover, further information about the PTGT rule (i.e.,
the guard and the priority) but also further information about the probabilis-
tic choices (i.e., the sets of clocks to be reset and probabilities) are depicted
in gray boxes. Lastly, we also allow to annotate a PTGT step in the induced
state space with (a) a name chosen for the probabilistic choice such as success
and failure in Figure 2f and (b) the values of the variables contained in the list
stepLabel (which may contain variables from L and R).

When comparing PTA and PTGTSs, we observe that PTA edges are either
enabled for the current valuation or not whereas PTGT rules may be applica-
ble for many matches at the same time (e.g. allowing to apply the Drive for
one of multiple shuttles). Priorities used in PTGTSs can be encoded in GTSs
(including PTGTSs) by adding the left-hand side graphs of rules with higher
priorities as negative application conditions to all rules with a lower priority.
Similarly, priorities, if integrated into PTA, could be encoded by refining the
guards. However, for our running example, we can exchange the underlying
track topology without effort, while this would require a fundamental adap-
tation of the corresponding PTA. Also, as in [19], we observe in section 6 that
small PTGTSs result in PTA of considerable size and we therefore conclude
that PTGTSs are typically much more concise compared to PTA.

4 Decomposition of Large-Scale Topologies

We now present our decomposition-based approach to analyze a PTGTS S0
modeling a large-scale cyber-physical system along the lines of the informal
presentation from the introduction. For our running example, such a PTGTS
is given by an initial graph typed over the type graph from Figure 2a that is
restricted later on in a suitable way, 13 PTGT rules of which we present three in
Figure 2f, Figure 2g, and Figure 3a (further rules are given in [20, Appendix]),
the invariant from Figure 2b, and the three APs from Figure 2e.

204 M. Maximova et al.

D T T T T T T T T D T T T T

T T T T

Y

T T

CS

T T T T T T T

Y

T

Y

T

CS

T T T

T T T T

G

T T T
T T

T T

T T

T T T
T

T

TTTT

FT1 FT2 FT3

FT4 FT5

FT6 FT7 FT8

(a) FTs for our running example where the red arrows indicate points for topology
(de)composition.

t1 : T t2 : T t3 : T

t4 : T t5 : T t6 : T

+ +

+

⊕

+ +

+

�

t3 : T T¬∃ ,� T t4 : T∧¬∃ ,�
t3 : T D∧¬∃ ,� D t4 : T∧¬∃ ,�

∧¬φFT1 ∧ . . . ∧ ¬φFT8

(b) Rule Merge for binary overlapping of two instances of FTs.

D T T T T T T T

Y

T T

CS

T T T T T T T T D

TD T T T

Y

T T

CS

T T T T T D

m1
m2 m3

(c) Decomposition M = {m1, m2, m3} of an LST w.r.t. FT1–FT8.

L K R

G G′ G′′�̂ r̂

� r

m m′ m′′

Fi

Li

F′
i F′′

i

Ki Ri

�̂i r̂i

�i ri

mi m′
i m′′

i

Fi
κ′i κ′′i

G
κ′ κ′′

κ

κi

αi ei e′i e′′i

Underlying GT rule ρ of the PTGTS S0

Step of S0 from G to G′′

Step of Si from Fi to F′′
i

Underlying GT rule ρi of the PTGTS Si

(d) Correspondence of the graph transformation based steps between the large-scale
system S0 and one of its fragment systems Si, which are preserving the respective
static structure given by G and Fi.

Fig. 4: FTs for our running example, rule Merge, example for topology com-
position, and correspondence between steps in the large-scale system and a
fragment system.

Compositional Analysis of PTGTSs 205

As a first step, we identify a substructure of the initial graph of S0 that is
static in the sense that this substructure is preserved and also never extended
throughout all PTGT steps of S0. For large-scale cyber-physical systems such
as our running example, the existence of such a static substructure may be jus-
tified by a logical or spatial distribution. The embedding of a static substruc-
ture G in a given graph G is then captured by a monomorphism κ : G G
describing how G is embedded into G. As a special case, such an embedding κ
can be derived for arbitrary graphs G by a monomorphism κTG : TG TG de-
scribing how the given type graph TG is restricted to a smaller type graph TG.
That is, G then contains only those elements from G that are typed over the
smaller type graph TG. For our running example, we restrict the type graph
TG from Figure 2a to such a smaller type graph TG by removing the Shuttle
node with its attributes, the at edge connected to the Shuttle node, and the
active attributes from the TLYellow and TLGreen nodes. The graphs G obtained
from graphs G of S0 using this restriction are then called large-scale topologies
(LSTs) and contain for our running example a track topology with depots, traf-
fic lights, and construction sites. Note that the fact that such an underlying LST
is indeed preserved and never extended by arbitrary rule applications can be
verified (at least for our running example) by inspecting each rule individually
using the technique of 1-induction [9, 26].

As a second step, we now introduce the notion of a decomposition of
the LST into a small set of (constrained) fragment topologies (FTs). Such (con-
strained) FTs are given by (a) a graph that is typed over the type graph used
for the LST and (b) a graph condition describing constraints on how the graph
of the FT may be embedded into graphs of S0. Moreover, an overlapping specifi-
cation o is required to describe how the embeddings αi of the graphs of two FTs
may overlap in the LST. Such an overlapping specification is given by a set of
spans (o1 : O T1, o2 : O T2) where O is the permitted overlapping graph that
is embedded into the two FTs. A decomposition of an LST (in the following
definition, we simply consider the LST contained in the initial graph G0 of S0)
is then given by embeddings of selected FTs into the LST (cf. Figure 1) such
that the overlapping specification is satisfied (the constraints of the FTs are
checked for S0 later on). In applications, to reduce the state space explosion
problem for the model checking phase later on, it is advantageous to employ
a low number of small FTs that are strictly constrained and are allowed to
overlap in a manageable number of ways.

Definition 1 (Decomposition of LST). If

– S0 is a PTGTS with initial state s0 = (G0, v0),
– κ : G0 G0 is a monomorphism identifying the LST of S0 contained in G0,
– F is a set of (constrained) FTs of the form (Fi, φi),
– o((F1, φ1), (F2, φ2)) ⊆ {(o1, o2) | o1 : O F1, o2 : O F2} is an overlapping

specification, which describes how two FTs from F may overlap,
– M is a list of tuples of the form (F, φ, α) where (F, φ) ∈ F and α : F G0,
– the monomorphisms in M respect the overlapping specification o, i.e., (see [20] for

a visualization) for all (F1, φ1, α1 : F1 G0), (F2, φ2, α2 : F2 G0) ∈ M there

206 M. Maximova et al.

is some pair (o1 : O F1, o2 : O F2) ∈ o((F1, φ1), (F2, φ2)) such that for the
pushout (g1 : F1 P, g2 : F2 P) of (o1, o2) (i.e., the overlapping of F1 and F2
w.r.t. (o1, o2)) there is some h : P G′

0 such that α1 = h ◦ g1 and α2 = h ◦ g2.

then M is a decomposition of the LST of S0 w.r.t. κ, F , and o. �

To provide a better intuition for this definition, we now present the decompo-
sition of the LST considered for our running example.

Example 1 (Decomposition for Running Example). Let F contain the constrained
FTs (FTi, φi) for 1 ≤ i ≤ 8 where each FTi is given in Figure 4a (here we use an
abbreviated notation where D, T, Y, G, and CS are the obvious abbreviations
for the node types of the type graph) and where φi states in each case that
shuttles must have a velocity of [2, 3] or [3, 4] time units per track.2

Let o((F1, φ1), (F2, φ2)) be the overlapping specification stating that over-
lappings (o1 : O F1, o2 : O F2) of two FTs are always (for any of the 8 × 8
combinations) of the form O = T1 → T2 → T3 where T1 and T3 are mapped to
a Track node in F1 and F2 with an entering and an exiting red arrow by o1 and
o2, respectively.

An example of a decomposition of an LST employing the previously men-
tioned FTs and overlapping specification is given in Figure 4c where three
FTs are embedded into an LST. To be appropriate later on, the decomposition
must ensure that all tracks of the LST are covered by embedding morphisms to
which Shuttle nodes may be connected (e.g. due to Shuttle nodes in the initial
graph of S0 or due to connected Depot nodes from which Shuttle nodes may
enter the LST). In fact, the eight chosen FTs limit the reasoning for our running
example to LSTs that can be decomposed using these FTs. ♦

In general, we consider the two use cases: (a) a given PTGTS with underlying
LST is to be analyzed and (b) LSTs are to be constructed based on the se-
lected and analyzed FTs. Both use cases are supported but require a different
handling. For the use case (a) a parsing of the LST w.r.t. the given FTs and over-
lapping specification must be performed to obtain a decomposition of the LST.
Efficient parsing algorithms have been devised for the special case of hyper-
edge replacement (HR) grammars (which require that nodes are not deleted)
in [8, 6, 7]. A suitable graph transformation based grammar for our running
example with 25 rules is given in [20, Appendix]. For the use case (b) in which
we need to construct some LST, we may employ node deleting rules. For our
running example, consider the rule Merge from Figure 4b that can be used to
iteratively overlap two FTs starting with a disjoint union of copies of FTs. The
rule Merge overlaps two instances of three successive Track nodes following
the overlapping specification where the application condition ensures that the
rule is applied at entry and exit points also excluding the possibility that the
six matched Track nodes belong to an instance of FTi using ¬φFTi.

2 For each FT from Figure 4a, this constraint can be formalized as a graph condition.

Compositional Analysis of PTGTSs 207

5 Overapproximation of Behavior

The decompositions of LSTs introduced in the previous section are now used
as a foundation to establish a behavioral relationship between a given PTGTS
S0 and n PTGTs Si that operate on the instances of FTs that are embedded into
the LST of S0 according to the given LST decomposition.

For this purpose, we extend the structural embeddings given by the α
monomorphisms from FTs to the LST in Definition 1 to embeddings of the
entire graph (including the static but also the dynamic parts) of a state of
some Si called fragment topology state (FTS) into the entire graph of a state of
S0 called large-scale state (LSS). Consider the left middle square in Figure 4d
where the embedding αi together with the FT and LST embeddings κi and κ
is complemented with an embedding ei of the FTS Fi into the LSS G. Note
that ei must be an extension of αi in the sense that the square commutes (i.e.,
κ ◦ αi = ei ◦ κi is required). Also, ei ◦ κi must satisfy the constraint φi of the FT
used for Si.

To simplify our presentation, we assume that the PTGTS S0 (as in our
running example) only employs APs of the form ∃(f : ∅ P,�), invariants
of the form ¬∃(f : ∅ P,�), and application conditions in PTGT rules that
are conjunctions of graph conditions of the form ¬∃(f : ∅ P,�) for some
graph P. This restriction simplifies the identification of parts of FTSs and LSSs
that are considered for an evaluation of such graph conditions.

As a next step, we present a decomposition relation, which establishes a
relationship between S0 and the PTGTSs Si in terms of embedding monomor-
phisms κ, αi, ei, and κi for all reachable states of S0. Moreover, the decom-
position relation requires that (a) the timed and discrete steps of S0 can be
mimicked by each affected Si and (b) that discrete steps performed by some
PTGTS Si in isolation on a part of the LST where the FT Fi does not overlap
with the FT Fj of another PTGTS Sj with i �= j can be mimicked by S0. That is,
the decomposition relation is a simulation for the steps performed by S0 and a
bisimulation on those steps that are performed in isolation by a single PTGTS
Si. Also, to allow to derive results for S0 from a model checking based analysis
of the PTGTSs Si, we require a set of APs A that is part of the APs of S0 and
of each Si. Based on this set A, the decomposition relation also requires that
only those FTSs and LSSs are related that satisfy the same sets of APs in A. For
our running example, this set will contain all three APs of S0 (see Figure 2e).
Finally, we require that the initial states of S0 and the n PTGTSs Si are covered
by the decomposition relation.

Definition 2 (Decomposition Relation). Given

– (PTGTS for large-scale system) S0 is a PTGTS with initial LSS s0 =
(G0, v0) where the LST is identified via κ0 : G0 G0 (and preserved by all
steps of the PTGTS),

– (PTGTSs for FTs) for each 1 ≤ i ≤ n: Si is a PTGTS with initial FTS s0,i =

(F0,i, v0,i) where the underlying FT is identified via κi : F0,i F0,i (and preserved
by all steps of the PTGTS),

208 M. Maximova et al.

– (preserved atomic propositions) A is a set of APs contained in each Si, and
– (Decomposition of the LST) M is a decomposition of size n of the LST of S0

w.r.t. κ0, F = {F0,i | 1 ≤ i ≤ n}, and some overlapping specificiation o (cf.
Definition 1).

S is a decomposition relation between S0 and (S1, . . . ,Sn) containing tuples of
the form ((G, v), κ : G G, w) where (G, v) is a state of S0, κ identifies the LST
of G, and w is a tuple of length n of tuples of the form (si, Fi, φi, αi, κi, ei) when the
following items are satisfied.

1. (elements of decomposition relation) The relation S explains how the FTS
of the PTGTS Si is embedded into the LSS of S0, i.e., (see Figure 4d) if ((G, v), κ :
G G, w) ∈ S and ((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w, then si =
(Fi, vi) is a state of Si, (Fi, φi, αi) is the ith element of M, κi : Fi G′ (embedding
of FT into LST), ei : Fi G (embedding of FTS into LSS), ei ◦ κi satisfies φi, and
κ ◦ αi = ei ◦ κi (embedding ei is an extension of embedding κi),

2. (consistent valuations) The clock valuations of each FTS agree with the LSS,
i.e., if ((G, v), κ : G G, w) ∈ S, ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w, and κi(ci) = c,
then vi(ci) = v(c).

3. (initial states related) The initial LSS of S0 is related, i.e., (s0, κ0, w) ∈ S
for some w where the ith element (si, Fi, φi, αi, κi, ei) of w satisfies si = s0,i.

4. (atomic propositions) The labeling with APs is in agreement w.r.t. A, i.e., if
((G, v), κ : G G, w) ∈ S, ap = ∃(f : ∅ P,�) ∈ A, the monomorphism
k : P G shows that ap is satisfied by G, then there is some 1 ≤ i ≤ n such
that ((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w, and there is some ki : P Fi
showing that ap is satisfied by Fi and k = ei ◦ ki.

5. (bisimulation of timed steps) If ((G, v), κ : G G, w) ∈ S and S0 has a
timed step (not involving a PTGTS rule) from (G, v) to (G, v + δ) then there is
some ((G, v + δ), w′) ∈ S where w′ is obtained pointwise from w by applying
the corresponding timed step to each ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w resulting in
((Fi, vi + δ), Fi, φi, αi, κi, ei) and vice versa for a common timed step of each Si of
duration δ.

6. (simulation of structural steps of S0 by Si) if
– ((G, v), κ : G G, w) ∈ S and
– S0 performs the structural step from (G, v) to (G′′, v′′) using an underlying

GT rule ρ = (� : K L, r : K R, φac) given in Figure 4d where, since the
step of S0 preserves the LST, there are unique κ′ : G G′ and κ′′ : G G′′
such that �̂ ◦ κ′ = κ and κ′′ = r̂ ◦ κ′, then

– ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some w′′ that is obtained pointwise
from w by adapting each tuple ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w into a resulting
tuple ((F′′

i , v′′i), Fi, φi, αi, κ′′i , e′′i) as follows. If m(L) ∩ ei(Fi) = ∅, then all
components of the tuple remain unchanged. Otherwise, the PTGTS Si must
simulate the step and the tuple needs the updating described in the following
steps.
• There must be a step of Si as given in Figure 4d from Fi to F′′

i for some
underlying rule ρi = (�i : Ki Li, ri : Ki Ri, φac,i) with the same
probability and priority as ρ.

Compositional Analysis of PTGTSs 209

• Since the step of Si preserves the FT, there are unique κ′i : Fi F′
i and

the required κ′′i : Fi F′′
i such that �̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i .• The step of Si must allow for e′i : F′

i G′ and e′′i : F′′
i G′′ such that

�̂ ◦ e′i = ei ◦ �̂i and r̂ ◦ e′i = e′′i ◦ r̂i.
7. (simulation of structural steps of Si on its core by S0) if

– ((G, v), κ : G G, w) ∈ S,
– ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w,
– Si performs the structural step from (Fi, vi) to (F′′

i , v′′i) using an underlying
GT rule ρi = (�i : Ki Li, ri : Ki Ri, φac,i) given in Figure 4d where,
since the step of Si preserves the FT, there are unique κ′i : Fi F′

i and κ′′i :
Fi F′′

i such that �̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i ,
– ei(mi(Li)) does not overlap with any ej(Fj) for i �= j, then
– there is some ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some G′′, v′′, κ′′, and w′′

as follows.
• There must be a step of S0 as given in Figure 4d from G to G′′ for some

underlying rule ρ = (� : K L, r : K R, φac) with the same probabil-
ity and priority as ρi.

• Since the step of S0 preserves the LST, there are unique κ′ : G G′ and
the required κ′′ : G G′′ such that �̂ ◦ κ′ = κ and κ′′ = r̂i ◦ κ′.

• The step of S0 must allow for e′i : F′
i G′ and e′′i : F′′

i G′′ such that
�̂ ◦ e′i = ei ◦ �̂i and r̂ ◦ e′i = e′′i ◦ r̂i.

• Finally, w′′ is obtained from w by only adapting the above chosen tuple
((Fi, vi), Fi, φi, αi, κi, ei) into the tuple ((F′′

i , v′′i), Fi, φi, αi, κ′′i , e′′i). �

We now state that decomposition relations allow for the simulation of each
path of the PTGTS S0 by the PTGTSs Si.

Lemma 1 (Existence of Simulating Paths). If S is a decomposition relation be-
tween S0 and (S1, . . . ,Sn), and π is a path of length m in S0 from the initial state to
a state sm, then, for each 1 ≤ i ≤ n, there is a path πi of Si (of length ki ≤ m) ending
in a state si,ki

such that (sm, κ, w) ∈ S for some κ and w where the ith element of w is
of the form (si,ki

, Fi, φi, αi, κi, ei). Moreover, the probability of each such path πi is at
least as high as the probability of the path π. See [20] for the proof.

We now state that a PTGTS satisfies a safety property given by an AP, when
safety w.r.t. this AP can be established for each Si.

Theorem 1 (Safety Verification). If S is a decomposition relation between S0 and
(S1, . . . ,Sn) w.r.t A and ap ∈ A, then S0 is safe w.r.t. the occurrence of an ap-labeled
graph when (for each 1 ≤ i ≤ n) Si is safe w.r.t. the occurrence of an ap-labeled graph.
Moreover, the probability of an occurrence of an ap-labeled graph from some state s in
S0 is smaller than the probability of an occurrence of an ap-labeled graph from some
S-related state si in Si. See [20] for the proof.

We now apply the proposed methodology of establishing a behavioral rela-
tionship between the PTGTS S0 and the PTGTSs Si to our running example.
For this purpose, we now describe how the FTS of each Si is embedded into
the LSS of S0 and, based on this embedding, how the Si is derived from S0.

210 M. Maximova et al.

Example 2 (Construction of Embeddings and Simulating PTGTSs). Firstly, the em-
beddings ei of FTSs into the LSS are obtained as extensions of the structural
embeddings κi by also matching (a) all Shuttle nodes (with their attributes) that
are connected to Track nodes contained in the FT via next edges and (b) all active
attributes of TLYellow and TLGreen nodes contained in the FT. This extension
also naturally applies to the initial state of S0. Clearly, two embeddings ei and
ej (for i �= j) only overlap in elements of their FTs but not in the additionally
matched dynamic elements.

Secondly, we adapt the given PTGTS S0 to obtain for each of the eight FTs
one PTGTS Si by (a) changing the initial graph to the source of ei capturing
the FT as well as the additional dynamic elements of the initial state of S0
connected to it, (b) adding eight rules for overapproximating the behavior
of S0 on the tracks that may overlap with tracks of other FTs. For the latter
point, we observe that all but three of the rules of S0 (including SetSlow and
ConstructionSiteBrake from Figure 2) are never applicable on the parts of FTs
that may overlap with other FTs (i.e., borders of FTs). The remaining three rules
are Drive from Figure 3a as well as two similar rules for stopping the shuttle
that we do not consider in detail here. Three of the four derived rules for rule
Drive are given in Figure 3.

The additional rule DriveEnterFast is used to simulate Drive steps where a
shuttle in S0 drives from a track not covered by Si to a track covered by Si.
The rule DriveEnterFast is essentially constructed by omitting the source track
T1 from the rule Drive, by adding the shuttle with one of the two expected
velocities (the other velocity results in the omitted rule DriveEnterSlow)3, and
by omitting application conditions that may not be satisfied due to the over-
lapping specification and the structure of FTs.

Similarly, the additional rules DriveExit1 and DriveExit2 are constructed
from rule Drive to allow for the simulation of the two steps in which a shut-
tle in S0 drives using rule Drive on two tracks covered by Si to a track not
covered by Si. These two rules are then constructed similarly, by omitting the
tracks T3 (for DriveExit1) and T3 and T4 (for DriveExit2) from rule Drive as
these are not covered by the Si, by removing the shuttle with its attributes in
rule DriveExit2, by omitting application conditions that may not be satisfied
due to the overlapping specification and the structure of FTs, and by omitting
application conditions that refer to the removed tracks.

Note that these additional rules overapproximate the behavior that is possi-
ble in S0 as they may be used when analyzing Si also when no corresponding
shuttle in S0 is able to enter the FT or when rule Drive would be disabled
due to the omitted application conditions for the case of rules DriveExit1 and
DriveExit2. ♦

For our running example, we now describe the construction of a suitable de-
composition relation relying on the LST decomposition introduced before.

3 Here, we rely on the constraints on the eight FTs (cf. Example 1) requiring that the
AP APunexpectedVelocity is never labeled in the large-scale system S0.

Compositional Analysis of PTGTSs 211

Lemma 2 (Existence of Decomposition Relation for Running Example). For
the PTGTS S0 of our running example with an arbitrary initial LST such that M is a
decomposition of that LST w.r.t. some monomorphism κ, the set of eight FTs, and the
overlapping specification o from Example 1 there is a decomposition relation S between
S0 and the n PTGTSs Si from Example 2. See [20] for the proof.

Based on this decomposition relation and Theorem 1, we can obtain the desired
overapproximation result for S0 for the qualitative safety w.r.t. collisions and
the quantitative unlikeliness of emergency brakes.

Corollary 1 (Qualitative and Quantitative Safety for Running Example). S0
exhibits no collisions when this is the case for each Si. Moreover, emergency brakes
are performed in S0 with a probability not higher than the probability of such an
occurrence in any Si.

Note that we only need to analyze one PTGTS for each of the eight permitted
FTs w.r.t. the occurrence of collisions and the probability of emergency brakes.

6 Evaluation

To analyze the eight PTGTSs constructed for our running example in section 5

(see Table 1 for the results), we have employed the methodology from [19]
generating the state spaces for these PTGTSs without timed steps and then
generated the corresponding PTA from these state spaces. We then restricted
these PTA to timed automata (TA) essentially removing the information on
probabilities, applied UPPAAL [15] to determine the edges of the TA that can
never be applied due to unsatisfiable guards, and removed the correspond-
ing edges from the previously generated PTA. The entire analysis using our
prototypical implementation required less than three days on a machine using
up to 250 GB memory where the state space generation required most of the
time. However, there is a vast potential for optimizations regarding memory
consumption (by only storing subsequently relevant information on states and
steps) and runtime (by facilitating concurrency during state space generation).

Firstly, using UPPAAL, we have verified that each of the eight TA (hence,
also the eight PTA) have no reachable deadlock (where also timed steps are
disabled). Hence, we obtain that the PTGTS S0 also does not contain this par-
ticular modeling error since, using the decomposition relation, we also obtain
that every deadlock reachable in S0 can be reached analogously in each Si.

Secondly, we have observed that the obtained PTA do not label any lo-
cation with APunexpectedVelocity or APcollision. For APunexpectedVelocity this means that
the additional rules such as DriveEnterFast and DriveEnterSlow for overapprox-
imating the steps of entering shuttles entirely cover all possible velocities of
shuttles. For APcollision this means that Corollary 1 implies that the PTGTS S0
with an LST constructed in the described way from the eight FTs is safe w.r.t.
the occurrence of collisions.

Thirdly, to verify that yellow traffic lights suitably slow down the shuttles
before construction sites, we have identified locations �i in the resulting PTA

212 M. Maximova et al.

Table 1: Results of our evaluation for the running example
fragment topology states steps collisions max. probability for violating the

velocity limit at a construction site

FT1 9 18 0 0
FT2 335 693 0 0
FT3 216 503 0 0
FT4 109 379 312 915 0 1 × 10−6

FT5 106 122 284 102 0 1 × 10−12

FT6 12 473 31 812 0 0
FT7 4048 16 314 0 0
FT8 121 953 452 340 0 0

that are labeled with APbraked (occurring only in FT4 and FT5). In each case, we
were able to track using a custom analysis algorithm (since the PRISM model
checker was too slow for the large PTA at hand) the shuttle backwards over
all possible paths leading to such a location �i up to the step where the shuttle
entered the FT. We then determined the maximal probability of any such path
obtaining a worst-case emergency brake probability of 10−6 and 10−12 for any
entering shuttle in FT4 and FT5, respectively. On the one hand, FT5 is thereby
verified to be quantitatively more desirable compared to FT4. On the other
hand, Corollary 1 implies that installations of yellow traffic lights as in FT4

and FT5 suitably decrease the likelihood of emergency brakes also for S0.
However, the probabilities that some shuttle executes an emergency brake in a
given time span in FT4/FT5 (obtained by combining the maximal throughput
of shuttles for FT4/FT5 with the worst-case probability obtained for FT4/FT5)
can be expected to be too coarse upper bounds when the maximal throughput
is not to be expected for the real system.

7 Conclusion and Future Work

We presented an analysis approach for large-scale systems modeled as PT-
GTSs for which model checking is not feasible. In this approach, we rely on
a decomposition of an underlying static large-scale topology into fragment
topologies of manageable size. Model checking is then applied for each frag-
ment topology and an adaptation of the PTGTS to such a fragment topology.
We thereby determine (a) overapproximations of reachability properties im-
portant for qualitative safety properties and (b) upper bounds for probabilistic
reachability properties important for quantitative safety properties.

As future work, we intend to extend our analysis to fairness properties
and conditions of the metric temporal graph logic (MTGL) [29]. Also, to cover
further aspects of the RailCab project [23], we will develop more general de-
composition schemes where dynamic components (such as connected shuttles
driving in convoys) may be covered by multiple fragment topologies. Lastly, to
further evaluate applicability of our approach, we intend to apply it to other
case studies as e.g. the one discussed in [1].

Compositional Analysis of PTGTSs 213

References

[1] Paolo Baldan, Andrea Corradini, and Barbara König. “Static Analysis
of Distributed Systems with Mobility Specified by Graph Grammars—A
Case Study”. In: Proc. of Int. Conf. on Integrated Design & Process Technol-
ogy. Ed. by Ehrig, Krämer, et al. SDPS, 2002.

[2] Basil Becker. “Architectural modelling and verification of open service-
oriented systems of systems”. PhD thesis. Hasso-Plattner-Institut für
Softwaresystemtechnik, Universität Potsdam, 2014. url: http ://opus.
kobv.de/ubp/volltexte/2014/7015/.

[3] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schill-
ing. “Symbolic invariant verification for systems with dynamic struc-
tural adaptation”. In: 28th International Conference on Software Engineering
(ICSE 2006), Shanghai, China, May 20-28, 2006. Ed. by Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa. ACM, 2006, pp. 72–81. doi:
10.1145/1134285.1134297.

[4] Basil Becker and Holger Giese. “On Safe Service-Oriented Real-Time Co-
ordination for Autonomous Vehicles”. In: 11th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC 2008), 5-7
May 2008, Orlando, Florida, USA. IEEE Computer Society, 2008, pp. 203–
210. doi: 10.1109/ISORC.2008.13.

[5] Basil Becker, Holger Giese, and Stefan Neumann. Correct dynamic service-
oriented architectures : modeling and compositional verification with dynamic
collaborations. Tech. rep. 29. Hasso Plattner Institute at the University of
Potsdam, 2009.

[6] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Formalization
and correctness of predictive shift-reduce parsers for graph grammars
based on hyperedge replacement”. In: J. Log. Algebraic Methods Program.
104 (2019), pp. 303–341. doi: 10.1016/j.jlamp.2018.12.006.

[7] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Graph Parsing as
Graph Transformation - Correctness of Predictive Top-Down Parsers”.
In: Graph Transformation - 13th International Conference, ICGT 2020, Held
as Part of STAF 2020, Bergen, Norway, June 25-26, 2020, Proceedings. Ed. by
Fabio Gadducci and Timo Kehrer. Vol. 12150. Lecture Notes in Computer
Science. Springer, 2020, pp. 221–238. doi: 10.1007/978-3-030-51372-6_13.

[8] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Predictive Top-
Down Parsing for Hyperedge Replacement Grammars”. In: Graph Trans-
formation - 8th International Conference, ICGT 2015, Held as Part of STAF
2015, L’Aquila, Italy, July 21-23, 2015. Proceedings. Ed. by Francesco Parisi
- Presicce and Bernhard Westfechtel. Vol. 9151. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 19–34. doi: 10.1007/978-3-319-21145-
9_2.

[9] Johannes Dyck. “Verification of Graph Transformation Systems with k-
Inductive Invariants”. PhD thesis. University of Potsdam, Hasso Plattner
Institute, Potsdam, Germany, 2020. doi: 10.25932/publishup-44274.

214 M. Maximova et al.

http://opus.kobv.de/ubp/volltexte/2014/7015/
http://opus.kobv.de/ubp/volltexte/2014/7015/
https://doi.org/10.1145/1134285.1134297
https://doi.org/10.1109/ISORC.2008.13
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1007/978-3-030-51372-6_13
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.25932/publishup-44274

[10] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer-Verlag, 2006.

[11] Amir Hossein Ghamarian and Arend Rensink. “Generalised Composi-
tionality in Graph Transformation”. In: Graph Transformations - 6th Inter-
national Conference, ICGT 2012, Bremen, Germany, September 24-29, 2012.
Proceedings. Ed. by Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg. Vol. 7562. Lecture Notes in Computer Science.
Springer, 2012, pp. 234–248. doi: 10.1007/978-3-642-33654-6_16.

[12] Holger Giese. “Modeling and Verification of Cooperative Self-adaptive
Mechatronic Systems”. In: Reliable Systems on Unreliable Networked Plat-
forms - 12th Monterey Workshop 2005, Laguna Beach, CA, USA, September
22-24, 2005. Revised Selected Papers. Ed. by Fabrice Kordon and Janos Szti-
panovits. Vol. 4322. Lecture Notes in Computer Science. Springer, 2005,
pp. 258–280. doi: 10.1007/978-3-540-71156-8_14.

[13] Holger Giese and Wilhelm Schäfer. “Model-Driven Development of Safe
Self-optimizing Mechatronic Systems with MechatronicUML”. In: Assur-
ances for Self-Adaptive Systems - Principles, Models, and Techniques. Ed. by
Javier Cámara, Rogério de Lemos, Carlo Ghezzi, and Antónia Lopes.
Vol. 7740. Lecture Notes in Computer Science. Springer, 2013, pp. 152–
186. doi: 10.1007/978-3-642-36249-1_6.

[14] Holger Giese, Matthias Tichy, Sven Burmester, and Stephan Flake. “To-
wards the compositional verification of real-time UML designs”. In: Pro-
ceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering 2003 held jointly with 9th European Software Engineering Confer-
ence, ESEC/FSE 2003, Helsinki, Finland, September 1-5, 2003. Ed. by Jukka
Paakki and Paola Inverardi. ACM, 2003, pp. 38–47. doi: 10.1145/940071.
940078.

[15] Eun-Young Kang, Dongrui Mu, and Li Huang. “Probabilistic Verification
of Timing Constraints in Automotive Systems Using UPPAAL-SMC”.
In: Integrated Formal Methods - 14th International Conference, IFM 2018,
Maynooth, Ireland, September 5-7, 2018, Proceedings. Ed. by Carlo A. Fu-
ria and Kirsten Winter. Vol. 11023. Lecture Notes in Computer Science.
Springer, 2018, pp. 236–254. doi: 10.1007/978-3-319-98938-9_14.

[16] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0:
Verification of Probabilistic Real-Time Systems”. In: Computer Aided Ver-
ification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 585–591. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1_47.

[17] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi
Wang. “Symbolic Model Checking for Probabilistic Timed Automata”.
In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of
Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24,

Compositional Analysis of PTGTSs 215

https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/978-3-540-71156-8_14
https://doi.org/10.1007/978-3-642-36249-1_6
https://doi.org/10.1145/940071.940078
https://doi.org/10.1145/940071.940078
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-642-22110-1_47

2004, Proceedings. Ed. by Yassine Lakhnech and Sergio Yovine. Vol. 3253.
Lecture Notes in Computer Science. Springer, 2004, pp. 293–308. isbn:
3-540-23167-6. doi: 10.1007/978-3-540-30206-3_21.

[18] Maria Maximova, Holger Giese, and Christian Krause. “Probabilistic
timed graph transformation systems”. In: Graph Transformation - 10th
International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg,
Germany, July 18-19, 2017, Proceedings. Ed. by Juan de Lara and Detlef
Plump. Vol. 10373. Lecture Notes in Computer Science. Springer, 2017,
pp. 159–175. isbn: 978-3-319-61469-4. doi: 10.1007/978-3-319-61470-0_10.

[19] Maria Maximova, Holger Giese, and Christian Krause. “Probabilistic
timed graph transformation systems”. In: J. Log. Algebr. Meth. Program.
101 (2018), pp. 110–131. doi: 10.1016/j.jlamp.2018.09.003.

[20] Maria Maximova, Sven Schneider, and Holger Giese. Compositional Anal-
ysis of Probabilistic Timed Graph Transformation Systems. Tech. rep. 133.
Potsdam, Germany: Hasso Plattner Institute at the University of Pots-
dam, 2021.

[21] Fernando Orejas. “Symbolic graphs for attributed graph constraints”. In:
J. Symb. Comput. 46.3 (2011), pp. 294–315. doi: 10.1016/j.jsc.2010.09.009.

[22] Fernando Orejas and Leen Lambers. “Lazy Graph Transformation”. In:
Fundam. Inform. 118.1-2 (2012), pp. 65–96. doi: 10.3233/FI-2012-706.

[23] RailCab Project. url: https://www.hni.uni-paderborn.de/cim/projekte/
railcab.

[24] Arend Rensink. “Compositionality in Graph Transformation”. In: Au-
tomata, Languages and Programming, 37th International Colloquium, ICALP
2010, July 6-10, Bordeaux, France, 2010, Proceedings, Part II. Ed. by Sam-
son Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf
der Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in Computer
Science. Springer, 2010, pp. 309–320. doi: 10.1007/978-3-642-14162-1_26.

[25] Willem P. de Roever, Hans Langmaack, and Amir Pnueli, eds. Composi-
tionality: The Significant Difference, International Symposium, COMPOS’97,
Bad Malente, Germany, September 8-12, 1997. Revised Lectures. Vol. 1536.
Lecture Notes in Computer Science. Springer, 1998. isbn: 3-540-65493-3.
doi: 10.1007/3-540-49213-5.

[26] Sven Schneider, Johannes Dyck, and Holger Giese. “Formal Verification
of Invariants for Attributed Graph Transformation Systems Based on
Nested Attributed Graph Conditions”. In: Graph Transformation - 13th
International Conference, ICGT 2020, Held as Part of STAF 2020, Bergen,
Norway, June 25-26, 2020, Proceedings. Ed. by Fabio Gadducci and Timo
Kehrer. Vol. 12150. Lecture Notes in Computer Science. Springer, 2020,
pp. 257–275. doi: 10.1007/978-3-030-51372-6_15.

[27] Sven Schneider, Leen Lambers, and Fernando Orejas. “Automated rea-
soning for attributed graph properties”. In: STTT 20.6 (2018), pp. 705–
737. doi: 10.1007/s10009-018-0496-3.

216 M. Maximova et al.

https://doi.org/10.1007/978-3-540-30206-3_21
https://doi.org/10.1007/978-3-319-61470-0_10
https://doi.org/10.1016/j.jlamp.2018.09.003
https://doi.org/10.1016/j.jsc.2010.09.009
https://doi.org/10.3233/FI-2012-706
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/3-540-49213-5
https://doi.org/10.1007/978-3-030-51372-6_15
https://doi.org/10.1007/s10009-018-0496-3

[28] Sven Schneider, Maria Maximova, Lucas Sakizloglou, and Holger Giese.
“Formal Testing of Timed Graph Transformation Systems using Metric
Temporal Graph Logic”. In: STTT (2019). Accepted.

[29] Sven Schneider, Lucas Sakizloglou, Maria Maximova, and Holger Giese.
“Optimistic and Pessimistic On-the-fly Analysis for Metric Temporal
Graph Logic”. In: Graph Transformation - 13th International Conference,
ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26, 2020,
Proceedings. Ed. by Fabio Gadducci and Timo Kehrer. Vol. 12150. Lecture
Notes in Computer Science. Springer, 2020, pp. 276–294. doi: 10.1007/
978-3-030-51372-6_16.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Compositional Analysis of PTGTSs 217

https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-51372-6_16
http://creativecommons.org/licenses/by/4.0/

	Compositional Analysis of Probabilistic Timed Graph Transformation Systems
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Decomposition of Large-Scale Topologies
	5 Overapproximation of Behavior
	6 Evaluation
	7 Conclusion and Future Work
	References

