
FuSeBMC: A White-Box Fuzzer for Finding
Security Vulnerabilities in C Programs

(Competition Contribution)

Kaled M. Alshmrany(�)1 �, Rafael S. Menezes2 , Mikhail R. Gadelha3 ,
and Lucas C. Cordeiro4

1 University of Manchester, Manchester, UK
Institute of Public Administration, Jeddah, Saudi Arabia

kaled.alshmrany@manchester.ac.uk
2 Federal University of Amazonas, Manaus, Brazil

3 SIDIA Instituto de Ciência e Tecnologia, Manaus, Brazil
4 University of Manchester, Manchester, UK

Abstract. We describe and evaluate a novel white-box fuzzer for C pro-
grams named FuSeBMC, which combines fuzzing and symbolic execution,
and applies Bounded Model Checking (BMC) to find security vulnera-
bilities in C programs. FuSeBMC explores and analyzes C programs (1)
to find execution paths that lead to property violations and (2) to in-
crementally inject labels to guide the fuzzer and the BMC engine to
produce test-cases for code coverage. FuSeBMC successfully participates
in Test-Comp’21 and achieves first place in the Cover-Error category
and second place in the Overall category.

Keywords: Automated Test-Case Generation · Symbolic Execution ·
Bounded Model Checking · Fuzzing · Security.

1 Test Generation Approach

Automated test-case generation is a method to check whether the software
matches expected requirements [2]. It involves the automated execution of soft-
ware components to evaluate intricate properties and achieve code coverage met-
rics (e.g., decision, branch, instruction). Here, we describe and evaluate a novel
white-box fuzzer, FuSeBMC, capable of automatically producing test-cases for C
programs. FuSeBMC provides an innovative software testing framework that de-
tects security vulnerabilities in C programs by using fuzzing and symbolic execu-
tion in combination with Bounded Model Checking (BMC) (cf. Fig. 1). FuSeBMC
builds on top of clang [1] to instrument the C program, uses Map2check [8] as a
fuzzing engine, and ESBMC (Efficient SMT-based Bounded Model Checker) [4,5]
as BMC and symbolic execution engines, thus combining dynamic and static ver-
ification techniques.

� Jury Member

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 363–367, 2021.
https://doi.org/10.1007/978-3-030-71500-7 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_19&domain=pdf
http://orcid.org/0000-0002-5822-5435
http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0001-6540-6587
http://orcid.org/0000-0002-6235-4272
https://doi.org/10.1007/978-3-030-71500-7_19

364 K. M. Alshmrany et al.

C Code

Test

Specification

Analyze C

code

Inject labels

Create Graphml

Test suite

Fuzzing

BMC

Selective

Fuzzer Test suiteLearn

Produce counterexamples for

cover-error and cover-branches

Test specification

Test generation

Test execution

Fig. 1: FuSeBMC: a white-box fuzzer framework for C Programs.

FuSeBMC takes a C program and a test specification [3] as input. In the
Cover-Error category, FuSeBMC invokes the fuzzing and BMC engines sequen-
tially to find a path that violates a given property. It uses an iterative BMC
approach that incrementally unwinds the program until it finds a property vi-
olation or exhausts time or memory limits. FuSeBMC uses incremental BMC
to explore the program state space searching for a property violation since all
programs in Test-Comp’21 are known to have issues. In the Cover-Branches

category, FuSeBMC explores and analyzes the target C program using the clang
compiler to inject labels incrementally. FuSeBMC will compute all branches of
the C code and inject the labels for each branch by adding the label GOAL-N ,
where N is the goal number. Both engines will check whether these injected
labels are reachable to produce test-cases for branch coverage.

FuSeBMC analyzes the counterexamples and saves them as a graphml file.
It checks whether the fuzzing and BMC engines could produce counterexamples
for both categories Cover-Error and Cover-Branches. If that is not the case,
FuSeBMC employs a second fuzzing engine named selective fuzzer which produces
test-cases for the rest of the labels. The selective fuzzer produces test-cases by
learning from the two engines’ output: it analyzes the range of the inputs that
should be passed to examine the target C program and then produces different
test-cases. Lastly, FuSeBMC prepares valid test-cases with metadata to test a
target C program using TestCov [3] as a test validator.

FuSeBMC sets a 150 seconds limit for the fuzzing engine and a 700 seconds
limit for the BMC engine and sets a 50 seconds limit for the selective fuzzer.
These numbers were obtained empirically by analyzing the Test-Comp’21 results.

2 Strengths and Weaknesses

Incremental BMC allows FuSeBMC to keep unwinding the program until a prop-
erty violation is found or time or memory limits are exhausted. This approach is
advantageous in the Cover-Error category as finding one error is the primary

A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs 365

goal. Another strength of FuSeBMC is that it can accurately model C programs
that use the IEEE floating-point arithmetic [6,7]. The floating-point encoding
layer in our BMC engine extends the support for the SMT FP theory to solvers
that do not support it natively. FuSeBMC can test programs with floating-point
arithmetic using all currently supported solvers in BMC engine (ESBMC), in-
cluding Boolector [9], which does not support the SMT FP theory natively.

In both Cover-Error and Cover-Branches categories, various test-cases pro-
duced by FuSeBMC are validated successfully. The majority of our test-cases
were produced by the BMC engine and the selective fuzzer; our fuzzing engine
did not produce many test-cases because it does not model the C library, so it
mostly guesses the inputs. For example, in the Cover-Error category, TestCov
confirms 500 test-cases produced by FuSeBMC, where our fuzzing engine pro-
duces 13 (Map2Check), BMC engine produces 393 (ESBMC), while our selective
fuzzer produces 94 test-cases (selective).

However, note that our fuzzing engine is not limited to only produce test-
cases. It helps our selective fuzzer by providing information about the number of
inputs required to trigger a property violation, i.e., the number of assignments
required to reach an error. In several cases, the BMC engine can exhaust the time
limit before providing such information, e.g., when there are large arrays that
need to be initialized at the beginning of the program. For example, consider
the following code fragment extracted from the standard copy1 ground-2.c

benchmark, as illustrated in Fig. 2.

1 #define N 100000
2 . . .
3 int a , a1 [N] , a2 [N] ;
4 for (a = 0 ; a < N ; a++) {
5 a1 [a] = VERIFIER nondet int () ;
6 a2 [a] = VERIFIER nondet int () ;
7 }
8 . . .
9 for (int x = 0 ; x < N ; x++)

10 VERIFIER assert (a1 [x] == a2 [x]) ;

Fig. 2: Code fragment that contains a large array.

In this particular example, ESBMC exhausts the time limit before check-
ing the assertion a1[x] == a2[x]. Apart from that, our employed verification
engines also demonstrate a certain level of weakness to produce test-cases due
to the many optimizations we perform when converting the program to SMT.
In particular, two techniques affected the test-case generation significantly: con-
stant folding and slicing. Constant folding evaluates constants (which includes
nondeterministic symbols) and propagates them throughout the formula during
encoding, and slicing removes expression not in the path to trigger a property

366 K. M. Alshmrany et al.

violation. These two techniques can significantly reduce SMT solving time. How-
ever, they can remove the expressions required to trigger a violation when the
program is compiled, i.e., variable initialization might be optimized away, forcing
FuSeBMC to generate a test-case with undefined behavior.

Regarding our fuzzing engine, we identified a limitation to handle programs
with pointer dereferences. The fuzzing engine keeps track of variables throughout
the program but has issues identifying when they go out of scope. When we try
to generate a test-case that triggers a pointer dereference, our fuzzing engine
provides thrash values, and the selective fuzzer might create test-cases that do
not reach the error.

3 Tool Setup and Configuration

In order to run our fusebmc.py script,5 one must set the architecture (i.e., 32 or
64-bit), the competition strategy (i.e., k -induction, falsification, or incremental
BMC), the property file path, and the benchmark path, as:

fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction,falsi,incr,fixed}]

[BENCHMARK_PATH]

where -a sets the architecture, -p sets the property file path, and -s sets
the strategy (e.g., kinduction, falsi, incr, or fixed). For Test-Comp’21,
FuSeBMC uses incr for incremental BMC.

When choosing the fuzzing engine, we set the following options when execut-
ing Map2Check: timeout of 150 seconds for Map2Check in Cover-Error, and a
timeout of 70 seconds in Cover-Branches; --fuzzer-mb 1000 limits memory to
1000 MB; --target-function-name reach−error defines the function name
to be searched; --target-function checks whether the target-function is reach-
able; --nondet-generator fuzzer uses only fuzzing; --generate-witness sets
the witness output path.

By choosing incremental BMC, the following options are set when executing
ESBMC: --no-div-by-zero-check disables the division by zero check (required
by Test-Comp); --force-malloc-success sets that all dynamic allocations suc-
ceed (a Test-Comp requirement); --floatbv enables floating-point SMT encod-
ing; --incremental-bmc enables incremental BMC; --unlimited-k-steps re-
moves the upper limit of iteration steps for incremental BMC; --witness-output
sets the witness output path; --no-bounds-check and --no-pointer-check

disable bounds-check and pointer-safety checks, resp., since we are only inter-
ested in finding reachability bugs; --k-step 5 sets the incremental BMC to 5;
--no-allign-check disables pointer alignment checks; and --no-slice disables
slicing of unnecessary instructions.

The Benchexec tool info module is named fusebmc.py and the benchmark
definition file is FuSeBMC.xml.
5 https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/
FuSeBMC.zip

https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/FuSeBMC.zip
https://gitlab.com/sosy-lab/test-comp/archives-2021/-/blob/master/2021/FuSeBMC.zip

A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs 367

4 Software Project

The FuSeBMC source code is written in C++ and it is available for downloading
at GitHub,6 which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is
publicly available under the terms of the MIT License. Instructions for building
FuSeBMC from the source code are given in the file README.md (including the
description of all dependencies).

References

1. Clang documentation. http://clang.llvm.org/docs/index.html.
2. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,

Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test-case generation. J. Syst. Softw. 86(8), 1978–2001, 2013.

3. Beyer, D.: Second competition on software testing: Test-Comp 2020. In FASE,
LNCS 12076, pp. 505–519, 2020.

4. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In ASE, pp. 888–891, 2018.

5. Gadelha, M.R., Monteiro, F.R., Cordeiro, B., Nicole: ESBMC v6.0: Verifying C
Programs Using k -Induction and Invariant Inference - (Competition Contribution).
In TACAS, LNCS 11429, pp. 209–213, 2019.

6. Gadelha, M.R., Menezes, R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ES-
BMC: scalable and precise test generation based on the floating-point theory -
(competition contribution). In FASE, LNCS 12076, pp. 525–529, 2020.

7. Gadelha, M.R., Cordeiro, L.C., Nicole, D.A.: An Efficient Floating-Point Bit-
Blasting API for Verifying C Programs. In VSTTE, LNCS 12549, pp. 178–195,
2020.

8. Menezes, R., Rocha, H., Cordeiro, L., Barreto, R.: Map2check using LLVM and
KLEE. In TACAS, LNCS 10806, pp. 437–441, 2018.

9. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on
Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

6 https://github.com/kaled-alshmrany/FuSeBMC

http://clang.llvm.org/docs/index.html
http://creativecommons.org/licenses/by/4.0/
https://github.com/kaled-alshmrany/FuSeBMC

	FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs (Competition Contribution)
	1 Test Generation Approach
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project
	References

