
HAL Id: hal-02985021
https://hal.science/hal-02985021

Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelization of the k-means Algorithm in a Spectral
Clustering Chain on CPU-GPU Platforms

Guanlin He, Stéphane Vialle, Marc Baboulin

To cite this version:
Guanlin He, Stéphane Vialle, Marc Baboulin. Parallelization of the k-means Algorithm in a Spectral
Clustering Chain on CPU-GPU Platforms. HeteroPar Workshop of 2020 Euro-Par International
Conference, Aug 2020, Warsaw, Poland. �hal-02985021�

https://hal.science/hal-02985021
https://hal.archives-ouvertes.fr

Parallelization of the k-means Algorithm in a
Spectral Clustering Chain on CPU-GPU

Platforms?

Guanlin He1�, Stéphane Vialle1, and Marc Baboulin2

1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire de Recherche en
Informatique, 91405, Orsay, France

guanlin.he@lri.fr stephane.vialle@centralesupelec.fr
2 Université Paris-Saclay, CNRS, Laboratoire de Recherche en Informatique, 91405,

Orsay, France
baboulin@lri.fr

Abstract. k-means is a standard algorithm for clustering data. It con-
stitutes generally the final step in a more complex chain of high quality
spectral clustering. However this chain suffers from lack of scalability
when addressing large datasets. This can be overcome by applying also
the k-means algorithm as a pre-processing task to reduce the input data
instances. We describe parallel optimization techniques for the k-means
algorithm on CPU and GPU. Experimental results on synthetic dataset
illustrate the numerical accuracy and performance of our implementa-
tions.

Keywords: k-means algorithm · Spectral clustering · Heterogeneous
CPU-GPU computing

1 Introduction

Clustering refers to the process that aims at revealing the intrinsic structure
of data by automatically grouping data instances into meaningful subsets called
clusters. The intra-cluster similarity is supposed to be high while the inter-cluster
similarity should be low. It is one of the most important tasks in machine learning
and data mining and has numerous applications, such as image segmentation
[16], video segmentation [17], document analysis [9], etc.

The k-means algorithm [13] is one of the most widely used clustering meth-
ods. It is a distance-based method that can efficiently find convex clusters, but
it usually fails to discover non-convex clusters. It also relies on an appropriate
selection of initial centroids to avoid being stuck in local minima solutions.

Spectral clustering [14] has gained popularity in the last two decades. Based
on graph theory, it embeds data into the eigenspace of graph Laplacian and
then performs k-means clustering on the embedding representation. Compared
to classical k-means, spectral clustering has many advantages. First, it is able

? Supported by the China Scholarship Council (No. 201807000143).

to discover non-convex clusters. Then, it has no problem of initialization and
can lead to a global solution. Furthermore, one can exploit the unique “eigengap
heuristic” [12] to estimate the number of clusters if the clusters are distinctly
separated. Finally, spectral clustering algorithms have the potential to be ef-
ficiently implemented on HPC platforms since they require substantial linear
algebra computations that can be processed using existing HPC libraries. How-
ever, spectral clustering has in general a computational cost of O(N3) where N is
the number of data instances [20]. This can be a critical issue when dealing with
large-scale applications where N can be of order 106 or even larger. To overcome
this difficulty, some researchers reduce the computational complexity of spectral
clustering through methodological changes, e.g., power iteration clustering [11].
It is also possible to use approximation or summarization techniques so that
only a small subset of data is involved in the complex computation, e.g., spar-
sification [4], Nyström approximation [6], or representatives extraction (using a
preliminary k-means step) [20]. Moreover, another powerful way is to accelerate
spectral clustering on parallel and distributed architectures, where using CPU-
GPU heterogeneous platforms is particularly attractive because it combines the
strengths of both processors. Specifically, CPUs are efficient in performing tradi-
tional computation tasks and have much more memory space than GPUs, while
GPUs provide high performance in mathematically intensive computations.

We are interested in proposing a general CPU-GPU-based implementation
of spectral clustering that can address large problems. There are several related
studies. Zheng et al. [22] present a parallelization of spectral clustering and im-
plement it on CPU and on GPU separately, but the performance for calculating
the affinity matrix remains to be improved and the situation is not considered
when a matrix is too large to be loaded into the device memory. Sundaram and
Keutzer [17] apply spectral clustering for long term video segmentation on a
cluster of GPUs. However, their implementation is dedicated to video segmenta-
tion and there is no measurement of speedup. Jin and JaJa [8] present a hybrid
implementation of spectral clustering on CPU-GPU platforms for problems with
a large number of clusters, but the considered datasets are of medium size and
the eigensolver performance appears limited.

In this paper, we consider the parallelization of the processing chain of large-
scale spectral clustering by combining the use of representatives extraction with
hybrid CPU-GPU computing. The main contributions of this paper are opti-
mized implementations on CPU and GPU for the k-means algorithm, which are
two steps of the global processing chain of spectral clustering. To our knowl-
edge, most of the existing works related to parallel k-means algorithm on CPU
(e.g., [3, 10]) and on GPU (e.g., [3, 5]) do not consider the issue of numerical
accuracy that may occur in the update phase due to the propagation of round-
off errors and that can lead to poor clustering quality. In this paper we address
both high performance of the algorithm and numerical accuracy in the update
phase of k-means clustering.

The remainder of this paper is organized as follows. Section 2 describes the
computational chain for spectral clustering. In Section 3 we present our parallel

Fig. 1. Data flow for our complete spectral clustering chain

implementations of k-means algorithm on CPU and GPU with the related opti-
mizations. The experimental evaluation of our code is then presented in Section
4 and we conclude in Section 5.

2 A Computational Chain for Spectral Clustering

Spectral clustering has many slightly different algorithms. Here, we present the
main steps of spectral clustering according to [12, 14]. Given a set of N data
instances of Dim dimensions: x1, ..., xN in RDim that are supposed to be grouped
into kc clusters, the three main steps of spectral clustering are the following (see
also the right part of Figure 1):

1. Construct the similarity matrix S. The similarity graph, which can be
represented by an N × N similarity matrix S, is used to model the simi-
larity between data instances. ε-neighborhood, k-nearest neighbors, and full
connection are three common ways to construct the similarity graph [12].
The first two ways yield typically sparse similarity matrix while the last
one generates dense matrix. The degree matrix D is a diagonal matrix that
can be easily derived from S with di =

∑N
j=1 sij . The unnormalized graph

Laplacian is defined as L = D − S and can be further normalized as the
symmetrix matrix Lsym = D−1/2LD−1/2 [12]. Some other researchers define
Lsym = D−1/2SD−1/2 that is normalized from S [14].

2. Compute the first kc eigenvectors e1, ..., eN of graph Laplacian Lsym.
Here, by saying “the first kc eigenvectors”, we refer to the eigenvectors cor-
responding to the kc smallest eigenvalues if graph Laplacian is normalized
from L, or the kc largest eigenvalues if normalized from S. Let E denote
the N × kc matrix containing the kc eigenvectors as columns, then form the
matrix T by normalizing each row of E to 1.

3. Perform final k-means clustering. Each row of T can be considered as
the embedding representation in Rkc of the original data instance with the
same row number. Therefore, performing k-means clustering on the rows of
T allows to obtain the kc clusters of original data instances.

It can be seen that spectral clustering involves linear algebra computations,
especially in the first two steps. This can be achieved using GPU computing and
specifically some highly optimized CUDA libraries provided by NVIDIA, such

as cuBLAS, cuSPARSE, cuSOLVER and nvGRAPH [15] or a public domain
library like MAGMA [18]. If a matrix is sparse, e.g., the similarity matrix for
ε-neighborhood graph or k-nearest neighbors graph, we can use the cuSPARSE
library. The cuSOLVER library can be used for eigenvector computations in
spectral clustering. Furthermore, the nvGRAPH, a library dedicated to graph
analytics, contains an API for spectral clustering. However, the API has two
important limits. First, it requires the number of clusters as an input in the
configuration of spectral clustering (which, in practice, may be difficult to know
in advance). Second, it assumes that the similarity matrix (in CSR format) is
already prepared, which can be computationally expensive for a general problem.

In view of the limits identified previously in related studies and in NVIDIA
solutions, we propose a strategy for parallelizing the complete spectral clustering
chain on CPU-GPU heterogeneous architectures as shown in Figure 1: The first
step of the data flow illustrated in Figure 1 allows to reduce significantly the
volume of N input data, extracting kr representatives via k-means algorithm
[20]. Typically, we have kc � kr � N . Each data instance is associated with the
nearest representative. Then the kr representatives are transferred from host to
device and spectral clustering is performed on GPU on these representatives to
find the kc clusters, taking advantage of the CUDA libraries discussed earlier. In
particular, it is possible to use either the cuSOLVER or the nvGRAPH Spectral
Clustering API for the computation of eigenvectors. The latter also encapsulates
the final k-means clustering step. The clustering result for the kr representatives
is transferred from device to host, and finally we obtain the cluster labels of N
data instances according to the attachment relationships in the first step.

Moreover, some heuristic methods for the automatic estimation of kc such
as [12, 19, 21] can also be applied by using the eigenpairs calculated with or
without the kr representatives approach.

3 Optimizing Parallel k-means Algorithm

In this section, we present the standard k-means algorithm and then describe
our parallel and optimized implementations on CPU and GPU, including the
inherent bottlenecks and our optimization methods especially for the step of
updating centroids.

3.1 k-means Algorithm

The k-means algorithm is a distance-based iterative clustering method. Algo-
rithm 1 describes the main steps. The inputs are supposed to be a dataset
containing N instances in Dim dimensions, and the desired number of clusters
K. The first step consists in selecting K initial centroids from the dataset, either
randomly or in a heuristic way (see [1]). Then the algorithm repeats two routines,
ComputeAssign and UpdateCentroids, until reaching the stopping criterion. The
ComputeAssign routine computes the distance between each instance and each
centroid, where the distances are measured using the Euclidean norm. For each
instance, we compare the distances related to different centroids and assign the

Algorithm 1: k-means algorithm

Inputs: N data instances in Dim dimensions, K: nb of clusters
Outputs: Cluster labels of N data instances

1 Select K initial centroids;
2 repeat
3 ComputeAssign routine;
4 UpdateCentroids routine;

5 until stopping criterion;

instance to the nearest centroid. In addition, we track the number of instances
that have different assignments (i.e. cluster labels) over two consecutive itera-
tions. The UpdateCentroids routine calculates the means of all instances that
are assigned to the same centroid and updates the centroids. The stopping crite-
rion can be either a maximal number of iterations, or a relatively stable result,
i.e., when the proportion of data instances that change of label is lower that a
predefined tolerance. The outputs are the cluster labels of all data instances.

3.2 Parallel Implementations

The parallelization of the k-means algorithm on CPU is achieved by using Open-
MP and auto-vectorization and by minimizing cache misses. The GPU code is
developed in CUDA. We minimize data transfers between CPU and GPU using
pinned memory for fast transfers. Specifically, the data instances to be clustered
are transferred from CPU to GPU at the beginning of program, then a series of
CUDA kernels and library functions are launched from CPU to perform k-means
clustering on GPU, finally the cluster labels are transferred to CPU. For the co-
alescence of memory access, we need to transfer the transposed matrix of data
instances. We also transpose the matrix of centroids on GPU, but the overhead
is insignificant since it is typically a small matrix. Moreover, in order to check
the stopping criterion, at each iteration we need to transfer to CPU the num-
ber of instances that change of label, but the price of this transfer is negligible.
Besides, we set the optimal sizes for grids and blocks of threads. The CPU code
can be used for the preliminary step that extracts representatives while the GPU
code can serve as the third step of the spectral clustering algorithm (see Figure
1). In both codes, we minimize data storage and access by integrating distances
computation and instances assignment into one routine (ComputeAssign).

This ComputeAssign routine exhibits a natural parallelism, leading to a s-
traightforward parallel implementation, both on CPU and GPU, not detailed
in this paper. Conversely, the UpdateCentroids routine appears more difficult
to be efficiently parallelized and is a source of rounding errors due to reduction
operations.

Effect of Rounding Errors. For implementations both on CPU and GPU,
when using large datasets and floating-point numbers with single precision (32-
bits arithmetic), we encountered the problem caused by rounding errors that

derive from the finite representation capacity of floating-point numbers in par-
ticular when adding two numbers of very different magnitudes. In the Update-
Centroids routine, the algorithm needs to calculate the sum of data instances
in each cluster and then divide the sum by the number of instances in the clus-
ter. Therefore, when a large number of instances are added together one by one
naively, the accumulation of rounding errors that may occur finally deteriorates
the clustering quality (see [7] for an illustration of the effect of rounding errors).
On the other hand, using double precision (64-bits arithmetic) can reduce the
effect of rounding errors to a satisfying level of accuracy in our use case, but
the computational cost is higher (see e.g., [2]). To preserve the performance of
computing in single precision while minimizing the effect of rounding errors, we
developed a two-step method as follows.

Two-Step Method for UpdateCentroids Routine. We split data instances
into a certain number of packages of similar size, then calculate the sum within
each package (first step), and compute the sum of all packages (second step).
By choosing an appropriate number of packages, we can avoid adding numbers
of significantly different magnitudes and obtain satisfactory numerical accuracy.
We illustrate hereafter how to efficiently parallelize this method on CPU and
GPU.

1 #pragma omp parallel {
2 ... // Declare variables , reset count and cent to zeros
3 q = N / P; r = N % P; // Quotient & Remainder
4 // Sum the contributions to each cluster
5 #pragma omp for private(pack) reduction (+: count , cent)
6 for (int p = 0; p < P; p++) { // Process by package
7 ... // Reset pack to zeros
8 ofs = (p < r ? ((q + 1) * p) : (q * p + r)); // Offset
9 len = (p < r ? (q + 1) : q); // Length

10 for (int i = ofs; i < ofs + len; i++) { // 1st step reduction
11 int k = label[i]; // - Count nb of instances in
12 count[k]++; // OpenMP reduction array
13 for (int d = 0; d < Dim; d++) // - Reduction in thread private
14 pack[k][d] += data[i*Dim + d]; // array
15 }
16 for (int k = 0; k < K; k++) // 2nd step reduction
17 for (int d = 0; d < Dim; d++) // - Reduction in OpenMP
18 cent[k][d] += pack[k][d]; // reduction array
19 }
20 // Final averaging to get new centroids
21 #pragma omp for
22 for (int k = 0; k < K; k++) // Process by cluster
23 for (int d = 0; d < Dim; d++)
24 cent[k][d] /= count[k]; // - Update global array
25 }

Listing 1.1. Two-step UpdateCentroids routine on CPU

Suppose that we divide N data instances into P packages and perform re-
ductions in two steps, the CPU implementation code is displayed in Listing 1.1.
We use both private and reduction clauses in OpenMP directive on line 5, to
parallelize the outer loops of the 2 reduction steps, while inner loops are com-
pliant with the main requirements of auto-vectorization (accessing contiguous
array indexes and avoiding divergences) engaged with -O3 compilation flag.

For parallel implementation on GPU, we exploit shared memory, dynamic
parallelism and multiple streams to achieve better performance. The Update-
Centroids routine is split into two steps: UpdateCent_S1 computing the sum
of instance values within each package (step 1) and UpdateCent_S2 computing
the values of new centroids (step 2). As shown in Listing 1.2, by using dynamic
parallelism (CUDA threads creating child threads), the host code is simplified
to two parent kernel launches. Each parent grid is small and contains only nb of
streams threads (one thread per stream).

1 cudaMemset (...); // Reset G_count , G_pack to zeros
2 // nS1 & nS2 : nb of streams for Step1 & Step2
3 UpdateCent_S1_Parent <<<1,nS1 >>>(G_label , G_pack , G_data_t , G_count);
4 UpdateCent_S2_Parent <<<1,nS2 >>>(G_pack , G_cent_t , G_count);

Listing 1.2. Host code of the 2-step solution on GPU for UpdateCentroids routine

The parent kernel and child kernel of step 1 are exhibited in Listing 1.3.
Each thread in UpdateCent_S1_Parent kernel processes several packages on its
own stream (created on line 42), and launches one child grid per package of data
instances (lines 47-57). Each child grid contains nb of instances per package × nb
of dimensions per instance working threads, and child grids launched on different
streams run concurrently as long as there are sufficient hardware resources in
the GPU. This strategy allows to optimize the GPU usage independently of the
number and size of packages. Thus, the number of packages is constrained only
by the rounding error problem. The cudaStreamDestroy (line 58) ensures that
this stream will not be reused to launch other threads, while the parent thread
will only end when all of its child threads are finished.

In UpdateCent_S1_Child kernel, by using shared memory, the expensive
atomicAdd operations are performed by every block instead of every thread,
hence are reduced significantly (Listing 1.3, lines 31 and 33). Specifically, threads
in the same block calculate the local sum by block size at first, then all the local
sums are added together through a few atomicAdd operations.

1 // Child kernel of UpdateCentroids Step1
2 __global__ void UpdateCent_S1_Child(int pid , int ofs , int len , int *G_label ,
3 T_real *G_pack , T_real *G_data_t , int *G_count){
4 __shared__ T_real shTabV[BSYD][BSXP]; // Tab of instance values
5 __shared__ int shTabL[BSXP]; // Tab of labels(cluster Id)
6 // Index initialization
7 int baseRow = blockIdx.y * BSYD; // Base row of the block
8 int row = baseRow + threadIdx.y; // Row of child thread
9 int baseCol = blockIdx.x * BSXP + ofs; // Base column of the block

10 int col = baseCol + threadIdx.x; // Column of child thread
11 int cltIdx = threadIdx.y * BSXP + threadIdx.x; // 1D cluster index
12 // Load the values and cluster labels of instances into sh mem tables
13 if (col < (ofs + len) && row < Dim) {
14 shTabV[threadIdx.y][threadIdx.x] = G_data_t[row*N + col];
15 if (threadIdx.y == 0) shTabL[threadIdx.x] = G_label[col];
16 }
17 __syncthreads (); // Wait for all data loaded into the sh mem
18 // Compute partial evolution of centroid related to cluster number ’cltIdx ’
19 if (cltIdx < K) {
20 T_real Sv[Dim] = {0.0}; // Sum of values in each dimension
21 int count = 0; // Counter of instances
22 // - Accumulate contributions to cluster number ’cltIdx ’
23 for (int x = 0; x < BSXP && (baseCol + x) < (ofs + len); x++) {
24 if (shTabL[x] == cltIdx) {

25 count ++;
26 for (int y = 0; y < BSYD && (baseRow + y) < Dim; y++)
27 Sv[baseRow + y] += shTabV[y][x];
28 }
29 }
30 // - Save the contrib. of block into global contrib. of the package
31 if (blockIdx.y == 0 && count != 0) atomicAdd (& G_count[cltIdx], count);
32 for (int d = 0; d < Dim; d++)
33 if (Sv[d] != 0.0) atomicAdd (& G_pack[d*K*P + K*pid + cltIdx], Sv[d]);
34 }
35 }
36

37 // Parent kernel of UpdateCentroids Step1
38 __global__ void UpdateCent_S1_Parent (...) {
39 int tid = threadIdx.x; // Thread id
40 if (tid < P) {
41 ... // Declare variables and stream
42 cudaStreamCreateWithFlags (&s, cudaStreamDefault);
43 q = N / P; r = N % P; // Quotient & remainder
44 np = (P - 1) / nS1 + 1; // Nb of packages for each stream
45 Db.x = BSXP; Db.y = BSYD; Db.z = 1; // BSXP: Block X-size for package
46 Dg.y = (D - 1) / BSYD + 1; Dg.z = 1; // BSYD: Block Y-size for dim
47 for (int i = 0; i < np; i++) {
48 pid = i * nS1 + tid; // Package id
49 if (pid < P) {
50 ofs = (pid < r ? ((q + 1) * pid) : (q * pid + r)); // Offset
51 len = (pid < r ? (q + 1) : q); // Length
52 Dg.x = (len - 1) / BSXP + 1;
53 // Launch a child kernel on a stream to process a package
54 UpdateCent_S1_Child <<<Dg,Db ,0,s>>>(pid , ofs , len , G_label , G_pack ,
55 G_data_t , G_count);
56 }
57 }
58 cudaStreamDestroy(s);
59 }
60 }

Listing 1.3. Device code on GPU for step 1 of UpdateCentroids routine

A similar strategy is used to implement step 2 of our complete solution on
GPU. Each thread of the parent grid processes several packages, and creates child
grids on its own stream. Each child grid is in charge to update the K × Dim
centroid values with the contribution of its package. So, it contains K × Dim
threads, each one executing only few operations and one atomicAdd (shared
memory is not adapted to and not used in step 2 computations). Again, using
dynamic parallelism and multiple streams has allowed to speedup the execution.

4 Experimental Evaluation

The experiments have been carried out on a server located at CentraleSupelec
(Metz campus). This server has two 10-core Intel(R) Xeon(R) Silver 4114 pro-
cessors at 2.2 GHz, and a NVIDIA GeForce RTX 2080 Ti containing 4352 CUDA
cores. The CPU code is compiled with gcc version 7.4.0 (with -O3 flag) to have
parallelization with OpenMP, vectorization on AVX units and various optimiza-
tions. The GPU code is compiled with CUDA version 10.2. Moreover, to use
dynamic parallelism in CUDA (see Section 3.2) we need to adopt the separate
compilation mode: generating and embedding relocatable device code into the
host object, before calling the device linker.

Table 1. k-means clustering on CPU (synthetic dataset)

Threads Precision
Nb of Numerical Init time Time per iteration (ms) Nb of Overall time

packages error (ms) ComputeAssign Update Loop iterations (ms)

1 thread
single

1 3.009794 0.009 591.47 152.31 743.78 12 8925.37

10 0.244048 0.012 616.94 151.19 768.12 5 3840.61

100 0.000745 0.008 594.13 152.36 746.49 6 4478.95

1000 0.000746 0.018 588.39 153.88 742.27 6 4453.64

double 1 0.000741 0.009 631.58 171.11 802.69 6 4816.15

40 threads
(40 logical
cores)

single

1c 3.009794 0.194 67.47 165.96c 233.43 6 1400.77

10d 0.244047 0.178 72.50 27.96d 100.46 5 502.48

100 0.000746 0.197 63.06 21.13 84.19 6 505.34

1000 0.000746 0.201 61.62 13.90 75.52 6 453.32

double 1 0.000741 0.139 76.55 208.04 284.59 6 1707.68

Table 2. k-means clustering on GPU (synthetic dataset)

Precision
Nb of Numerical Overhead time (ms) Init time Time per iteration (ms) Nb of Overall time

packages error Transfer Transpose (ms) ComputeAssign Update Loop iterations (ms)

single

1 0.000992 81.15 0.15 2.64 1.96 13.77 15.73 5 162.59

10 0.000760 81.13 0.12 2.75 1.96 13.58 15.54 5 161.70

100 0.000739 81.18 0.19 2.74 1.97 13.29 15.26 5 160.41

1000 0.000741 81.11 0.29 2.65 1.98 14.07 16.05 5 164.30

double 1 0.000741 81.13 0.14 2.65 8.98 32.05 41.03 5 289.07

As benchmark, we use a synthetic 4D dataset created in Python. It contain-
s 50 million instances uniformly distributed in 4 convex clusters (12.5 million
instances in each cluster). Each cluster has a radius of 9 and the centroids are
supposed to be (40, 40, 60, 60), (40, 60, 60, 40), (60, 40, 40, 60) and (60, 60,
40, 40), respectively, in the way that the k-means algorithm would not be sensi-
tive to the initialization of centroids and would not be trapped in local minimum
solutions. However, due to the intrinsic errors of generating pseudo-random num-
bers and the rounding errors of floating-point numbers, it appears the calculated
centroids could have a deviation of order 10−4 from the ideal ones.

In our benchmark, we iterate the algorithm while any data instance is at-
tached to a new centroid (tolerance = 0, see Section 3.1). Since the number of
iterations on CPU and GPU can vary depending on independent selections of ini-
tial centroids and on the numerical precision, we are more interested here in the
elapsed time per iteration than the overall execution time. The most important
results in our tables are highlighted in boldface.

In Table 1, we evaluate the k-means clustering on CPU by comparing
the average numerical error of final centroids and the elapsed time per iteration
by varying the number of threads, the arithmetic precision, and the number of

c 1 package −→ 1 task during main computations −→ only 1 working thread
d 10 packages −→ 10 tasks during main computations −→ only 10 working threads

Table 3. Influence of block size on performance

BLOCK SIZE X for packages Time of Update per iteration (ms)

(BSXP in listings) 100 packages 1000 packages

16 15.65 18.36

32 13.29 14.07

64 17.62 18.92

Table 4. Impact of GPU optimization on the execution time of UpdateCentroids

Optimization on GPU
Time of Update per iteration (ms)

100 packages 1000 packages 10000 packages

Näıve 241.15 261.72 513.37

Dynamic parallelism 94.52 97.63 3155.18

Shared memory 17.05 23.47 88.14

Dynamic parallelism & Shared memory 13.39 14.13 2368.82

Shared memory & Streams 15.28 19.71 70.42

Dynamic parallelism & Shared memory & Streams 13.29 14.07 29.19

Table 5. Speedups of k-means routines on synthetic dataset (single precision)

Speedup
CPU 40 threads vs. 1 thread GPU vs. CPU 1 thread GPU vs. CPU 40 threads

100 packages 1000 packages 100 packages 1000 packages 100 packages 1000 packages

ComputeAssign ×9.42 ×9.55 ×302.06 ×297.42 ×30.06 ×31.15

Update ×7.21 ×11.07 ×11.46 ×10.94 ×1.59 ×0.99

Loop ×8.87 ×9.83 ×48.93 ×46.25 ×5.52 ×4.71

packages. The column “Loop” represents the whole of two k-means routines. We
observe that using a certain number of packages in the UpdataCentroids routine
reduces the numerical error in single precision. In our case, using 100 packages is
enough for achieving the same numerical accuracy as in double precision. Using
single precision instead of double precision decreases the elapsed time.

We give in Table 2 the accuracy and performance results of k-means clus-
tering on GPU. Using packages reduces the effect of rounding errors, and this
reduction is enhanced by using the shared memory that allows initial local reduc-
tions. The routine UpdateCentroids is the most time-consuming routine on GPU
while ComputeAssign represents a small proportion of the runtime. In our GPU
implementation, we optimize the configuration of grids and blocks of threads.
Table 3 shows an example of how block configuration affects the performance
where we set BLOCK SIZE Y (BSYD in listings) to 4 (the number of dimen-
sions of the synthetic data). Note that the centroids initialization and most of
data transfers are performed only one time, hence their impact on the whole
runtime decreases with the number of iterations. The elapsed time for regular
transpositions of some small data appears negligible.

Table 4 demonstrates the impact of GPU optimization on the running time
of UpdateCentroids. Compared to the näıve implementation with many atomi-

cAdd operations, using shared memory reduces significantly the execution time
for different number of packages. The dynamic parallelism also improves the
performance in the case of 100 packages and 1000 packages but it degrades the
performance for 10000 packages. This is because the GPU hardware resources are
not fully concurrently exploited when there are a large number of small packages
to be processed on the default stream. Therefore, introducing multiple streams
could contribute to the concurrent use of hardware resources and consequently
reduce the execution time, which is clearly demonstrated in the case of 10000
packages. The combined use of dynamic parallelism, shared memory and streams
achieves very good performances for a general number of packages.

The speedups for the two routines of k-means and the resulting full itera-
tion are displayed in Table 5. For the k-means loop, the best speedup obtained
(compared with the sequential implementation) is about ×10 on CPU using 40
logical cores and almost ×50 on GPU (which is 5 times faster than on CPU
using 40 logical cores). For the ComputeAssign routine we achieve much high-
er speedups (around ×300) on GPU than on CPU while the speedups for the
UpdateCentroids routine are similar on CPU and GPU.

5 Conclusion and Future Work

We have proposed parallel implementations on CPU and GPU for the k-means
algorithm, which is a key component of the computational chain for spectral clus-
tering on CPU-GPU heterogeneous platforms. We have addressed via a two-step
reduction the numerical accuracy issue that may occur in the phase of updating
centroids due to the effect of rounding errors. Our GPU implementation employs
dynamic parallelism, shared memory and streams to achieve optimal perfor-
mance for updating centroids. Experiments on a synthetic dataset demonstrate
both numerical accuracy and parallelization efficiency of our implementations.

In this paper we have used only a synthetic dataset but as future work we plan
to evaluate our parallel k-means algorithms on real-world datasets and compare
our implementation with other existing ones. In particular we expect to obtain
higher speedups in high-dimensional datasets or those containing a large number
of clusters, where the phase of computing the distances is more significant.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, New Orleans, Louisiana, USA (2007)

2. Baboulin, M., Buttari, A., Dongarra, J.J., Kurzak, J., Langou, J., Langou, J.,
Luszczek, P., Tomov, S.: Accelerating scientific computations with mixed precision
algorithms. Comput. Phys. Commun. 180(12), 2526–2533 (2009)

3. Bhimani, J., Leeser, M., Mi, N.: Accelerating k-means clustering with parallel
implementations and GPU computing. In: 2015 IEEE High Performance Extreme
Computing Conference, HPEC 2015, Waltham, MA, USA (2015)

4. Chen, W., Song, Y., Bai, H., Lin, C., Chang, E.Y.: Parallel spectral clustering in
distributed systems. IEEE Trans. Pattern Anal. Mach. Intell. 33(3) (2011)

5. Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., Toraldo, G.: A GPU-
accelerated parallel K-means algorithm. Computers & Electrical Engineering 75,
262–274 (2019)

6. Fowlkes, C.C., Belongie, S.J., Chung, F.R.K., Malik, J.: Spectral grouping using
the Nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2) (2004)

7. Jézéquel, F., Graillat, S., Mukunoki, D., Imamura, T., Iakymchuk, R.: Can we
avoid rounding-error estimation in hpc codes and still get trustful results? (2020),
https://hal.archives-ouvertes.fr/hal-02486753, working paper or preprint

8. Jin, Y., JáJá, J.F.: A high performance implementation of spectral clustering on
CPU-GPU platforms. In: 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May
23-27, 2016. pp. 825–834. IEEE Computer Society (2016)

9. Karypis, M.S.G., Kumar, V., Steinbach, M.: A comparison of document clustering
techniques. In: TextMining Workshop at KDD2000 (2000)

10. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Szustak, L.: Performance en-
hancement of a dynamic K-means algorithm through a parallel adaptive strategy
on multicore CPUs. Journal of Parallel and Distributed Computing (2020)

11. Lin, F., Cohen, W.W.: Power iteration clustering. In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel. pp. 655–662 (2010)

12. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4) (2007)
13. MacQueen, J.e.a.: Some methods for classification and analysis of multivariate

observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1(14), pp. 281–297 (1967)

14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorith-
m. In: Advances in Neural Information Processing Systems 14 [Neural Information
Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Van-
couver, British Columbia, Canada]. pp. 849–856 (2001)

15. NVIDIA: NVGRAPH LIBRARY USER’S GUIDE (2019), https://docs.nvidia.com
/cuda/pdf/nvGRAPH Library.pdf

16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

17. Sundaram, N., Keutzer, K.: Long term video segmentation through pixel level spec-
tral clustering on GPUs. In: IEEE International Conference on Computer Vision
Workshops, ICCV 2011 Workshops, Barcelona, Spain (2011)

18. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5&6), 232–240 (2010)

19. Xiang, T., Gong, S.: Spectral clustering with eigenvector selection. Pattern Recog-
nit. 41(3), 1012–1029 (2008)

20. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Pro-
ceedings of the 15th ACM International Conference on Knowledge Discovery and
Data Mining, Paris, France, 2009 (2009)

21. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neu-
ral Information Processing Systems 17 [Neural Information Processing Systems,
NIPS 2004, December 13-18, 2004, Vancouver, Canada]. pp. 1601–1608 (2004)

22. Zheng, J., Chen, W., Chen, Y., Zhang, Y., Zhao, Y., Zheng, W.: Parallelization of
spectral clustering algorithm on multi-core processors and GPGPU. In: 2008 13th
Asia-Pacific Computer Systems Architecture Conference. pp. 1–8. IEEE (2008)

