Skip to main content

A New Parallel Methodology for the Network Analysis of COVID-19 Data

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing Workshops (Euro-Par 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12480))

Included in the following conference series:

Abstract

Coronavirus disease (COVID-19) outbreak started at Wuhan, China, and it has rapidly spread across the world. In this article, we present a new methodology for network-based analysis of Italian COVID-19 data. The methodology includes the following steps: (i) a parallel methodology to build similarity matrices that represent similar or dissimilar regions with respect to data; (ii) the mapping of similarity matrices into networks where nodes represent Italian regions, and edges represent similarity relationships; (iii) the discovering communities of regions that show similar behaviour. The methodology is general and can be applied to world-wide data about COVID-19. Experiments was performed on real datasets about Italian regions, and they although the limited size of the Italian COVID-19 dataset, a quite linear speed-up was obtained up to six cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  3. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  4. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kumar, A.: Modeling geographical spread of COVID-19 in India using network-based approach. medRxiv (2020). https://doi.org/10.1101/2020.04.23.20076489

  6. Kuzdeuov, A., et al.: A network-based stochastic epidemic simulator: controlling COVID-19 with region-specific policies. medRxiv (2020). https://doi.org/10.1101/2020.05.02.20089136

  7. Lai, A., Bergna, A., Acciarri, C., Galli, M., Zehender, G.: Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2. J. Med. Virol. (2020). https://doi.org/10.1002/jmv.25723

    Article  Google Scholar 

  8. Milano, M.: Computing languages for bioinformatics: R. In: Gribskov, M., Nakai, K., Schonbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, vol. 1, pp. 889–895. Elsevier, Oxford (2019)

    Google Scholar 

  9. Milano, M., Cannataro, M.: Statistical and network-based analysis of Italian COVID-19 data: communities detection and temporal evolution. Int. J. Environ. Res. Public Health 17(12), 4182 (2020)

    Article  Google Scholar 

  10. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  11. Reich, O., Shalev, G., Kalvari, T.: Modeling COVID-19 on a network: super-spreaders, testing and containment. medRxiv (2020). https://doi.org/10.1101/2020.04.30.20081828

  12. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  13. Van Dongen, S.: Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30(1), 121–141 (2008)

    Article  MathSciNet  Google Scholar 

  14. Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA (2020). https://doi.org/10.1001/jama.2020.2648

    Article  Google Scholar 

  15. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

    Article  Google Scholar 

  16. Zhu, N., et al.: A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. (2020). https://doi.org/10.1056/NEJMoa2001017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Milano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agapito, G., Milano, M., Cannataro, M. (2021). A New Parallel Methodology for the Network Analysis of COVID-19 Data. In: Balis, B., et al. Euro-Par 2020: Parallel Processing Workshops. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12480. Springer, Cham. https://doi.org/10.1007/978-3-030-71593-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71593-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71592-2

  • Online ISBN: 978-3-030-71593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics