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Abstract. In this paper, we propose a method for simultaneous removal
of artefact and detection of lesion borders in dermatoscopy images. Our
methodology include investigating the influence of colour spaces and pop-
ular threshold-based binarization techniques on segmentation accuracy.
Based on the investigation, we determine the colour space and binariza-
tion techniques that are most suitable for the proposed method. Fur-
thermore, we analyze the relationship between different attributes of 600
dermatoscopy images and the segmentation accuracy of the proposed
method. The analysis provide insight on the computation of threshold
correction factor that will optimize segmentation accuracy. Performance
evaluation results show potential for clinical applications.

Keywords: Skin Lesion - Colour Spaces - Set Theory.

1 Introduction

Computer aided diagnostic (CAD) systems facilitate image interpretation which
assist dermatologists in the early detection and diagnosis of skin cancer to avoid
unnecessarily expensive biopsy [1], [2]. Improved diagnostic accuracy of skin
cancer and the physicians’ level of confidence in clinical diagnosis have been
attributed to the use of dermatoscopy images in CAD systems [3], [4].

There are five successive stages of a CAD system for the classification of
pigmented skin lesion [5], [6]. It begins with image acquisition using a dermato-
scope. The second stage is the extraction of lesion boundary. At the third stage,
features are extracted from the segmented lesion, followed by the fourth stage
where the number of extracted features are pruned down to only the most rel-
evant features. At the last stage, the selected features are used to classify the
lesion as either benign tumor or malignant melanoma.

Segmentation is a very critical stage in a CAD system because the subsequent
stages of the workflow leading to reliable and efficient diagnosis is strongly de-
pendent on accurate lesion border detection. Unfortunately, confounding factors

* Supported by European Research Consortium and Informatics (ERCIM).



2 M. Osadebey et al.

such as poor image quality and the presence of artifacts may pose serious chal-
lenge to segmentation task. [7]. Common artifacts in dermatoscopy images are
skin hairs which occlude the lesion boundary and clutter the background. Other
artefact include clutters such as ruler markings, colour charts, gel bubbles, date
stamps and ink markers. Cluttering and occluding objects present high gradients
which mimic skin lesion boundaries. Consequently, it becomes challenging for
intensity-based image analysis systems to accurately detect the lesion boundary
and extract texture information required for classification [8]. To address these
challenges, a pre-processing algorithm such as [9], [10], [11], [12] or a robust seg-
mentation algorithm such as [13], [14], [15], [16], [17], which considers each of
these confounding factors, is incorporated into a CAD system for the diagnosis
of skin cancer [18]. Preprocessing algorithms designed to address these chal-
lenges increase resources, computational cost and introduce extraneous features,
thereby reducing the efficacy of a CAD system for skin cancer detection.

The introduction of robust segmentation techniques have eliminated the need
for pre-processing steps such as shading attenuation, colour illumination correc-
tion and contrast enhancement. Nevertheless, there is room for new segmenta-
tion techniques to improve the efficiency and reliability of a CAD system. Most
current robust segmentation techniques still require hair removal pre-processing
step because they perform poorly in the presence of cluttering and occluding
objects [19], [20]. Images with hair occlusion is one of the factors which limit the
detection accuracy of deep learning techniques in the diagnosis of skin cancer
[21]. Pre-processing algorithms for hair elimination and restoration are based
on morphological operation and diffusion-based techniques which have the ten-
dency to introduce blurring into the image. Texture restoration within lesion
region is an invasive and delicate operation with high risk of distorting the orig-
inal texture which drastically reduce the quality of the segmented image. When
the texture is disturbed it will be difficult to utilize the segmented image for
automatic lesion change detection and for inclusion in an efficient and effective
CAD tool for skin cancer diagnosis [22].

Our Contribution

Inspired by [23] on plant leaves segmentation in cluttered and occluded images,
this paper will propose a method that can remove artefact and segment lesion
in dermatoscopy images without the need for a separate pre-processing step for
artefact removal. The algorithm for the proposed method begins with transform-
ing the test image to a suitable colour space. The next step is threshold-based
binarization. Finally, we iterate the symmetric difference between the binarized
image and its rotated version. This final step simultaneously detect lesion bor-
ders and eliminate occlusions and clutters. Two key contributions of this paper
on skin analysis from dermatoscopy images are:

Contribution 1. Investigate the influence of colour space channels and threshold-
based binarization techniques on segmentation accuracy. Based on the investi-
gation, we determine colour channel and binarization techniques for optimizing
segmentation accuracy.
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Contribution 2. Statistically analyze the relationship between image attributes
and segmentation accuracy. Based on the analysis, we propose a threshold correc-
tion factor to enhance the performance of specific threshold-based segmentation
techniques.

2 Materials and Methods

2.1 Sources of Data

The experiments for this study utilize 600 dermatoscopy images from two databases.
Four hundred and sixty four images are from the International Skin Imaging
Collaboration (ISIC) archive https://isic-archive.com/. The remaining 136
images are from the Dermatology Service of Hospital Pedro Hispano, Matosin-
hos, Portugal http://www.fc.up.pt/addi/. Images from the two databases are
single-lesion images acquired with different dimensions. The range of row M
dimensions are {765 < M < 6668}. Corresponding column N dimensions are
{572 < N < 4439}. Each image has ground truth provided by certified derma-
tologists.

2.2 Dataset Attributes

In order to evaluate the performance of the proposed method on images with dif-
ferent types of artefact, we classify the database images into five categories. The
categories and number of images in each category are normal (233), dark corners
(84), hair occlusion (93), clutter (57) and multiple artifacts (133). For each image
in a given category, six visual attributes were identified and quantitatively eval-
uated. Visual attributes are labels that can be given to an image to describe its
appearance [24]. The first visual attribute is perceptual quality D;. It was evalu-
ated using BRISQUE, a no-reference image quality assessment method proposed
by [25]. Metrics for quantifying the remaining visual attributes are defined in Eq.
1 - 4. Second attribute (see Eq. 1) is area of lesion Dy, where A, is the number
of pixels within lesion region in the ground truth image. Third attribute (see Eq.
2) is the lesion position Djs relative to the image centroid, where (xs,ys) and
(Xg4,Y,) are the pixel location of the lesion and image centroids, respectively.
Fourth attribute (see Eq. 3) is the eccentricity of lesion Dy, where a,b are the
semi-major and semi-minor axes lengths of the lesion. The fifth attribute (see
Eq. 4) is the level of cluttering and occlusion D5, where A, is the total number
of pixels that do not belong to either lesion nor healthy skin in the test image.

Dy = 100 (ﬁfv) (1)

D3 _ \/(.’ES - Xg)2 + (yS - YQ)2 (2)

1/Xg2+}fg2
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Fig. 1. Flow chart for implementation of the proposed skin lesion segmentation in a
dermatoscopy image.

2.3 Methodology

The flow chart in Fig. 1 and the images in Fig. 2 explains the nine successive
steps to implement the proposed method using an hair-occluded test image TIM
with identification number ISIC_0000138 from the ISIC challenge 2018.

1. Read Original Image

The RGB test image TIM shown in Fig. 2a is read by the algorithm.
2. Colour Space Transformation

The TIM is transformed GSX to the HSV colour space, followed by the extrac-

tion of the saturation channel image GSM shown in Fig. 2b.
3. Threshold-based Binarization

The operation of the algorithm requires that the core of the lesion and the lesion
borders as well as the cluttering and occluding objects in the binary image are
dominated by dark pixels. The reasoning behind this requirement will be obvious
in the subsequent steps. To satisfy this requirement, we compute the comple-
ment of the GSM image. Thereafter, we apply the minimum error method of
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Fig. 2. The implementation of proposed method. Detailed explanation is in Section 2.3

thresholding [26] to convert BIX the complement image to a binary image shown
in Fig. 2c. The computation of the image complement is not required, for ex-
ample, binary images generated from grayscale and the luminance channel of
the CIELAB colour space because they satisfy the operation requirement of the
algorithm.
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4. Rotation Transformation

We make a copy of BIM and rotate RTX the duplicate image about its center
by a very small angle # = 1. The rotated image RTM is shown in Fig. 2d. The
stationary binary image and its rotated version are regarded as two separate sets
A C U, B C U, respectively of logical pixels belonging to a universal set U (see
Fig. 2e).

5. First Set Difference

Prior to displacement, both images are pixel-wise identical. After displacement,
both images are no longer pixel-wise identical. We compute SDX the set differ-
ence SD1 between the stationary and rotated image:

(A\ B) = {z|z € AN ¢ B} ()

The set difference SD1 are pixels in a specific location in the stationary image
(red coloured region in Fig. 2f) but are not in the same corresponding pixel

location in the displaced image.
6. Second Set Difference

In this step we compute SDX the set difference SD2 between the rotated and
the stationary image:

(B\A)={z|lre BAx & A} (6)

The set difference is the purple coloured region in Fig. 2f.
7. Symmetric Difference

Figure 3g (top figure) shows that the union of A and B is the equivalent of three
disjoint sets:
(AUB)=(A\B)U(B\A)U(ANB) (7)

Equation 7 above can be expressed as:
(AUB)=(A®B)U(ANDB) (8)

where the first term, A® B is the symmetric difference of A and B (blue coloured
region in Fig. 2g). The symmetric difference image SDM shown in Fig. 2h is
the set of elements which are in either of the sets and not in their intersection.
The bright pixels in the symmetric difference image (in Fig. 2h) provides infor-
mation on all the pixels that are disturbed and weakened by the small angular
displacement. The disturbed (shifted) pixels are the boundary pixels of the le-
sion region. The weakened pixels are the cluttering and occluding objects such
as the skin hairs which are severely weakened because their spatial extent and
circularity are very low in comparison to lesions. The second term (A N B) on
the RHS of Eq. 8 (brown coloured region in Fig. 2g) account for pixels which
are preserved under rotation transformation. The preserved pixels shown in Fig.
2h are the dark pixels that dominate the healthy skin and the core of the skin

lesion regions.
8. Segmentation mask

Now we will show why the algorithm requires a binary image which the lesion and
occluding objects are dominated by dark pixels. The bright pixels in the SDM
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image shown Fig. 2h (occluding hair and skin lesion borders) are used to replace
(erase) corresponding locations (dark pixels) in the stationary image shown in
Fig. 2c. This pixel replacement action simultaneously reduces hair occlusion
and detect the lesion border producing the image shown in Fig. 2i. Borrowing
knowledge from [15], a single operation of computing the symmetric difference
image may not be sufficient to detect all the hairs and skin lesion boundary pix-
els. For this reason, the computation of the SDM is iterated 5 number of times:

B = [logy(sE)] 9) sE = 100 (A’;N) (10) where sE

is a new dataset attribute which we refer to as the spatial extent and A, is the
total number of pixels that describe the region occupied by the lesion, cluttering
and occluding objects in a test image. The attribute sF is logarithmically trans-
formed to scale down its relatively large range of values. In the second iteration,
the output from the first iteration (Fig. 2i) is rotated ¢ = 1 about the image
centroid to produce the image shown in Fig. 2j. Figure 3k is the SDM between
Fig. 2i and Fig. 2j. Figure 3l is the output of the second iteration obtained by
using the bright pixels in Fig. 2k to replace the dark pixels in Fig. 2i. Figure 3m
is the binary image obtained after 5 iterations. The segmentation mask shown
in Fig. 2n was derived after area thresholding to remove small structures and

hole filling operation.
9. Segmented RGB Image

The segmented image SIM shown in fig. 20 is a RGB image. The three colour
channels are derived SIX by pixel-wise multiplication of each colour channel of
the original dermatoscopy image with the segmentation mask followed by vector
summation of the three channels. The ground truth image is shown in Fig. 2p

3 Experiments and Results

This study has three sessions of experiments. The first session is performance
evaluation. In the second session, we analyze the performance evaluation results.
Based on the analysis, we determine the binarization techniques that requires
correction factor. The third session applies threshold correction factor to relevant
binarization techniques.

3.1 Performance Evaluation

The proposed method was evaluated on the 600 test images using thirteen
colour channels from four colour spaces. The colour channels are denoted RGB
(r,g,b,G),where G denote the gray scale, HSV (h,s,v), CIELAB (L,A,B) and
CIEXYZ (x,y,z). The preliminary segmentation for each colour space experiment
was implemented using five different threshold-based techniques. Notations for
the threshold techniques are ISODATA [27], MEAN [28], MINERROR [26], MO-
MENT [29] and OTSU [30]. We adopt Dice similarity index as the evaluation
metric because it has been consistently used since the inception of the ISIC
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Fig. 3. Segmentation results before the application of correction factor to the bina-
rization techniques. The first, second, third and fourth columns are the test image,
segmented mask, segmented RGB image and the ground truth image, respectively

challenge. Table 1 display the mean and standard deviation (in bracket) Dice
scores. Letter F in the table indicates Dice score less than 0.65. The results from
Table 1 suggests that not all colour spaces are suitable for segmentation. Also,
segmentation accuracy varies with the choice of colour space and binarization
technique. Furthermore, the saturation channel of the HSV colour space can be
considered the optimal colour channel for skin lesion segmentation.

Examples of segmentation results for the saturation channel of the HSV
colour space are displayed in Fig. 4. The first, second, third and last column of
Fig. 4 are the test image, segmented mask, segmented RGB image and ground
truth image, respectively. First row of Fig. 4 are the results for hair-occluded test
image, ISIC_0000095 using MINERROR thresholding technique with parameters
(8=05,¢=1). Second row show the result for another hair-occluded test image
IMDO003 using OTSU technique with parameters (8 = 6,0 = 1). Third and fourth
rows are the results for normal test images, IMD014 and ISIC_0015130 using
ISODATA and MOMENT techniques, respectively. The corresponding operating
parameters are (8 = 2,0 = 1) and (8 = 4,60 = 1), respectively
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Table 1. Performance of the proposed method using five threshold-based techniques
and thirteen channels from four colour spaces. Letter F denotes Dice score less than
0.65. Red-coloured numbers are Dice scores recorded after the application of threshold
correction factor.

Threshold Colour Space Channel

Methods rig b G his v|L|A B x|y |z
ISODATA ([27]) F[0.66(0.31)|F F F(0.83(0.2) F|F|F F F|F|0.68(0.39)
MEAN ([28]) F|F F F F|0.82(0.26),0.91(0.20) |F|F|0.66(0.32)|0.72(0.32) [F|F|F
MINERROR ([26]) |F|F 0.74(0.32)|F F|0.82(0.24), 0.85(0.18) |F|F|F 0.69(0.33)|F|F|0.70(0.30)
MOMENT ([29]) |F|F 0.68(0.39) |F F|0.81(0.12) F|F|F F F|F|0.65(0.40)
OTSU ([30]) F]0.67(0.31)|F 0.65(0.31)|F|0.83(0.15) FIF|F F F|F|0.71(0.36)

Table 2. Correlation coefficient between performance of proposed method (imple-
mented in the saturation channel with five binarization techniques) and five dataset
attributes.

Dataset Threshold Methods
AttributesISODATA MEAN MINERROR MOMENT |OTSU
27] | [28] [26] 29] | [30]
D1 0.24 0.01 -0.02 0.20 0.26
D2 0.07 0.34 0.10 -0.21 0.02
D3 -0.12 -0.18 -0.10 -0.07 -0.14
D4 0.01 0.03 -0.04 0.01 -0.04
D5 0.05 -0.17 -0.29 0.10 0.10

3.2 Analysis of Results and Correction Factor

The relationship between the Dice score-based performance of the proposed
method and the five attributes of the datasets was quantified using the Spearman
rank correlation coefficient p [31]:

r=l-Tin) (11)

where ¢; is the difference between the two ranks of each observation and L = 600
is the number of observations. The correlation coefficients displayed in Table 2
suggest the followings (1) the MEAN and MINERROR binarization techniques
are more robust to variations in perceptual quality. (2) Lesion size can influence
the MEAN and MOMENT binarization techniques. (3) Lesion position and ec-
centricity does not significantly influence segmentation accuracy. (4) The level
of cluttering and occluding objects have significant influence on the performance
of the proposed method implemented with MEAN and MINERROR techniques.
Based on this analysis, we conclude that correction factor can enhance the per-
formance of the MEAN and MINERROR techniques. The MEAN technique
tend to underestimate the threshold in the presence of cluttering and occluding
objects leading to oversegmentation. We consider that, cluttering and occluding
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objects, in the absence of other confounding factors, contribute to the relative
contrast as well as the ratio of class sizes in the image. To compensate for this
shortcomings we determine, for each image, a correction factor o defined as

a=1+ (:E> (12)

The reasoning behind the correction factor is that images with increasing spatial
extent tend to be homogeneous, so the corrected threshold p. ~ p. Conversely,
images with lower spatial extent tends to be heterogeneous, so the corrected
threshold p. > p. The correction factor is multiplied with the average pixel
intensity level of the test image.

The MINERROR technique is robust to the size of lesion but in the presence
of occluding objects, it overestimate the threshold leading to undersegmentation.
To address this problem, we adopt the mean value of pixels u as the reference
threshold. Then we define a new threshold 7"

- {T1 if (L) <=15 (13)
T5 if Otherwise

where T} is the MINERROR threshold, and 75 are the threshold levels computed

using any of ISODATA, MOMENT and OTSU techniques. The reasoning here

is to leverage the robustness of ISODATA, MOMENT and OTSU techniques to

the level of occluding objects.

3.3 Evaluation with Correction Factor

Correction factor was applied to the MEAN and MINERROR techniques accord-
ing to Eq. 12 and Eq. 13. Then we repeat the evaluation of the proposed method
for the saturation channel of the HSV colour space. The segmentation accuracy
(red colour in Table 1) improved from 0.82 to 0.91 for the MEAN technique and
from 0.82 to 0.85 for the MINERROR technique.

4 Conclusions and Future Work

Although image segmentation of skin lesions has been successfully addressed in
many studies, there is need to improve the performance of several techniques.
Challenges encountered in skin lesion segmentation include confounding factors
such as skin hairs. Some pre-processing steps designed to address these chal-
lenges reduce the efficacy of a CAD system. We hereby propose a new method
to segment skin lesion in dermatoscopy images without the need for hair re-
moval preprocessing step. Binarization technique incorporated into the prelimi-
nary segmentation stage makes it potentially efficient and the proposed method
is robust to images with different attributes. Parameters which define the algo-
rithm operation can be either manually or automatically adjusted to optimize
segmentation accuracy. Furthermore, the different steps in the implementation of
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the algorithm are linked by parameters which encourages automation, an impor-
tant attribute for effective computer-aided diagnosis. Future research direction
will focus on utilizing a much larger volume of dataset. We will explore other
approaches to compute the correction factor for the different binarization tech-
niques. The influence of the algorithm parameters on segmentation accuracy will
be investigated.
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