Skip to main content

Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images

  • Conference paper
  • First Online:
Book cover Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12587))

Abstract

Computer-aided diagnostics (CAD) based on deep learning methods have grown to be the most concerned method in recent years due to its safety, efficiency and economy. CAD’s function varies from providing second opinion to doctors to establishing a baseline upon which further diagnostics can be conducted [3]. In this paper, we cross-compare different approaches to classify thyroid nodules and finally propose a method that can exploit interaction between segmentation and classification task. In our method, detection and segmentation results are combined to produce class-discriminative clues for boosting classification performance. Our method is applied to TN-SCUI 2020, a MICCAI 2020 challenge and achieved third place in classification task. In this paper, we provide exhaustive empirical evidence to demonstrate the applicability and efficacy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, J., Wu, F., Jiang, T., Zhu, J., Kong, D.: Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med. Phys. 44(5), 1678–1691 (2017). https://doi.org/10.1002/mp.12134

    Article  Google Scholar 

  2. Song, W., et al.: Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J. Biomed. Health Inform. 23(3), 1215–1224 (2019). https://doi.org/10.1109/JBHI.2018.2852718

    Article  Google Scholar 

  3. Castellino, R.A.: Computer aided detection (CAD): an overview. Cancer Imaging 5(1), 17–19 (2005). https://doi.org/10.1102/1470-7330.2005.0018. The official publication of the International Cancer Imaging Society

    Article  Google Scholar 

  4. Chi, J., Walia, E., Babyn, P., Wang, J., Groot, G., Eramian, M.: Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J. Digit. Imaging 30(4), 477–486 (2017). https://doi.org/10.1007/s10278-017-9997-y

    Article  Google Scholar 

  5. Li, X., et al.: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 20(2), 193–201 (2019). https://doi.org/10.1016/s1470-2045(18)30762-9

    Article  Google Scholar 

  6. Prochazka, A., Gulati, S., Holinka, S., Smutek, D.: Classification of thyroid nodules in ultrasound images using direction-independent features extracted by two-threshold binary decomposition. Technol. Cancer Res. Treat. 18 (2019). https://doi.org/10.1177/1533033819830748

  7. Guo, D., et al.: Organ at risk segmentation for head and neck cancer using stratified learning and neural architecture search. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 4222–4231 (2020). https://doi.org/10.1109/CVPR42600.2020.00428

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  9. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 6402–6411 (2019). https://doi.org/10.1109/CVPR.2019.00657

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection (2019). (cite arxiv:1904.08189Comment: 10 pages (including 2 pages of References), 7 figures, 5 tables)

  12. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 8530–8539 (2020). https://doi.org/10.1109/CVPR42600.2020.00856

  13. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 2921–2929 (2016). https://doi.org/10.1109/CVPR.2016.319

  14. Ouyang, X., et al.: Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia. IEEE Trans. Med. Imaging 39(8), 2595–2605 (2020). https://doi.org/10.1109/TMI.2020.2995508

    Article  Google Scholar 

  15. Mayo Clinic: Thyroid nodules (2020)

    Google Scholar 

  16. Mayo Clinic: Needle biopsy (2020)

    Google Scholar 

  17. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  18. Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, pp. 730–734 (2015). https://doi.org/10.1109/ACPR.2015.7486599

  19. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv:2004.08955

  20. Fu, J., et al.: Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 3141–3149 (2019). https://doi.org/10.1109/CVPR.2019.00326

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Ouyang or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, X., Ouyang, X., Liu, T., Shen, D. (2021). Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds) Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. MICCAI 2020. Lecture Notes in Computer Science(), vol 12587. Springer, Cham. https://doi.org/10.1007/978-3-030-71827-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71827-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71826-8

  • Online ISBN: 978-3-030-71827-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics