Skip to main content

A Bi-directional, Multi-modality Framework for Segmentation of Brain Structures

  • Conference paper
  • First Online:
Book cover Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data (MICCAI 2020)

Abstract

Careful delineation of normal-tissue organs-at-risk is essential for brain tumor radiotherapy. However, this process is time-consuming and subject to variability. In this work, we propose a multi-modality framework that automatically segments eleven structures. Large structures used for defining the clinical target volume (CTV), such as the cerebellum, are directly segmented from T1-weighted and T2-weighted MR images. Smaller structures used in radiotherapy plan optimization are more difficult to segment, thus, a region of interest is first identified and cropped by a classification model, and then these structures are segmented from the new volume. This bi-directional framework allows for rapid model segmentation and good performance on a standardized challenge dataset when evaluated with volumetric and surface metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeanneret-Sozzi, W., et al.: The reasons for discrepancies in target volume delineation: a SASRO study on head-and-neck and prostate cancers. Strahlenther. Onkol. 182(8), 450–457 (2006). https://doi.org/10.1007/s00066-006-1463-6

    Article  Google Scholar 

  2. Brouwer, C.L., et al.: 3D variation in delineation of head and neck organs at risk. Radiat. Oncol. 7, 32 (2012). https://doi.org/10.1186/1748-717X-7-32

    Article  Google Scholar 

  3. González-Villà, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., Lladó, X.: A review on brain structures segmentation in magnetic resonance imaging (2016). https://doi.org/10.1016/j.artmed.2016.09.001

    Article  Google Scholar 

  4. Cardenas, C.E., Yang, J., Anderson, B.M., Court, L.E., Brock, K.B.: Advances in Auto-Segmentation (2019). https://doi.org/10.1016/j.semradonc.2019.02.001

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. De Brébisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015). https://doi.org/10.1109/CVPRW.2015.7301312.

  7. McClure, P., et al.: Knowing What You Know in Brain Segmentation Using Bayesian Deep Neural Networks (2019). https://doi.org/10.3389/fninf.2019.00067. https://www.frontiersin.org/articles/10.3389/fninf.2019.00067/full

  8. Shusharina, N., Bortfeld, T., Cardenas, C.E.: MICCAI 2020 ABCs Challenge. https://abcs.mgh.harvard.edu/index.php.

  9. Oktay, O., et al.: Attention U-Net: Learning where to look for the pancreas. arXiv. (2018)

    Google Scholar 

  10. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

  11. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014)

    Google Scholar 

  12. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp.. 4278–4284 (2017)

    Google Scholar 

  13. Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv (2018)

    Google Scholar 

  14. Moeskops, P., et al.: Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. NeuroImage Clin. 17, 251–262 (2018). https://doi.org/10.1016/j.nicl.2017.10.007

    Article  Google Scholar 

  15. Luna, M., Park, S.H.: 3D Patchwise U-Net with transition layers for MR brain segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 394–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_40

    Chapter  Google Scholar 

  16. Wang, Y., Zhao, L., Wang, M., Song, Z.: Organ at risk segmentation in head and neck CT images using a two-stage segmentation framework based on 3D U-net. IEEE Access. 7, 144591–144602 (2019). https://doi.org/10.1109/ACCESS.2019.2944958

    Article  Google Scholar 

  17. Rhee, D.J., et al.: Automatic detection of contouring errors using convolutional neural networks. Med. Phys. 46, 5086–5097 (2019). https://doi.org/10.1002/mp.13814

    Article  Google Scholar 

  18. Court, L.E., et al.: Radiation planning assistant - a streamlined, fully automated radiotherapy treatment planning system. J. Vis. Exp. 2018, e57411 (2018). https://doi.org/10.3791/57411

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the High Performance Computing facility at the University of Texas MD Anderson Cancer Center and the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computational resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skylar S. Gay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gay, S.S. et al. (2021). A Bi-directional, Multi-modality Framework for Segmentation of Brain Structures. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds) Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. MICCAI 2020. Lecture Notes in Computer Science(), vol 12587. Springer, Cham. https://doi.org/10.1007/978-3-030-71827-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71827-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71826-8

  • Online ISBN: 978-3-030-71827-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics