
Bidirectional RNN-based Few-shot Training for Detecting
Multi-stage A�ack

Di Zhao

17125268@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Jiqiang Liu

jqliu@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Jialin Wang

17120417@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Wenjia Niu*

niuwj@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Endong Tong*

edtong@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Tong Chen

18112044@bjtu.edu.cn

Beijing Jiaotong University

No.3, Shangyuan Village

Haidian, Beijing, China 100044

Gang Li

Gang.li@deakin.edu.au

Deakin University

Victoria, Australia

ABSTRACT
”Feint A�ack”, as a new type of APT a�ack, has become the focus

of a�ention. It adopts a multi-stage a�acks mode which can be

concluded as a combination of virtual a�acks and real a�acks. Un-

der the cover of virtual a�acks, real a�acks can achieve the real

purpose of the a�acker, as a result, it o�en caused huge losses

inadvertently. However, to our knowledge, all previous works use

common methods such as Causal-Correlation or Cased-based to

detect outdated multi-stage a�acks. Few a�entions have been paid

to detect the ”Feint A�ack”, because the di�culty of detection lies

in the diversi�cation of the concept of ”Feint A�ack” and the lack of

professional datasets, many detection methods ignore the semantic

relationship in the a�ack. Aiming at the existing challenge, this

paper explores a new method to solve the problem. In the a�ack

scenario, the fuzzy clustering method based on a�ribute similarity

is used to mine multi-stage a�ack chains. �en we use a few-shot

deep learning algorithm (SMOTE&CNN-SVM) and bidirectional

Recurrent Neural Network model (Bi-RNN) to obtain the ”Feint

A�ack” chains. ”Feint A�ack” is simulated by the real a�ack in-

serted in the normal causal a�ack chain, and the addition of the

real a�ack destroys the causal relationship of the original a�ack

chain. So we used Bi-RNN coding to obtain the hidden feature of

”Feint A�ack” chain. In the end, our method achieved the goal to

detect the ”Feint A�ack” accurately by using the LLDoS1.0 and

LLDoS2.0 of DARPA2000 and CICIDS2017 of Canadian Institute for

Cybersecurity.

KEYWORDS
multi-stage a�ack, Feint A�ack, fuzzy clustering, few-shot learning,

Bi-RNN model

1 INTRODUCTION
Under the background of the rapid development of global network

informationization, the hidden, pervasive and targeted Advanced

Persistent �reat (APT) poses a growing threat to various high-

level information security systems [15]. APT a�acks are increasing

which target to national and enterprise network information sys-

tems and data security face severe challenges. In March 2011, at the

6th International Conference on Information Warfare and Security

(ICIW), three security researchers at Lockheed Martin proposed an

Intrusion Kill Chain (IKC) [4]. From the perspective of intrusion

detection, they decompose the a�ack process into seven steps: re-

connaissance, weaponization, delivery, exploitation, installation,

command and control (C2), and actions on objectives. �is model

rede�nes the kill chain in the military �eld to cyberspace security,

providing us with new ideas for solving APT a�acks [21] [9].

However, at the end of 2017, Trend Micro pointed out that there

has been a new type of APT a�ack named ”Feint A�ack” [10]. It not

only uses the same a�ack, but also makes full use of two separate

malware a�acks. One a�ack (Virtual a�ack) is responsible for dis-

tracting and masking the malicious activity of another a�ack (Real

a�ack) to provide a way to further infect or steal data and intel-

lectual property. Enterprise IT Security Risk Survey Report pointed
out that the above-mentioned virtual a�acks are o�en distributed

denial of service (DDoS) a�acks [5]. �rough analysis of security

experts, these DDoS a�acks are only ”smoke bombs” that a�acks

use to cover their real a�acks. Some enterprises that have su�ered

DDoS a�acks �nding that DDoS a�acks are only part of the overall

network a�ack, accounting for only 29% of the total a�ack time.

When a DDoS a�ack occurs, the enterprise’s security department

must try to quickly restore normal access services because the

normal external access of the enterprise is denied or interrupted.

�erefore, during the DDoS a�ack, security departments are o�en

required to go all out to solve the DDoS a�ack problem, and then

the a�acker ”make a feint to the east but a�ack in the west” and

ar
X

iv
:1

90
5.

03
45

4v
1

 [
cs

.C
R

]
 9

 M
ay

 2
01

9

cannot take into account the other intrusion. A�er the ”Feint At-

tack”, 25% of companies will lose important data at the same time.

As it turns out, in order to improve the e�ciency of a�ackers, an

a�acker o�en launches a variety of other forms of a�ack when

launching a DDoS a�ack. �erefore, once a company is found to be

a�acked by DDoS, it must understand the full threat situation and

be ready to handle multiple types of network a�acks, otherwise it

is likely to su�er greater losses. �e Trend Micro report predicted

that such a�acks will become more common in 2018.

�e ”Feint A�ack” mode has received extensive a�ention in

the �eld of cyberspace security. However, in the face of special

a�acks, how to carry out related detection and defense work is still

a problem. �e detection of multi-stage a�ack mode at home and

abroad is currently in the key research stage. �is paper mainly

focuses on the special a�ack mode of ”Feint A�ack”, and proposes

a detection model based on fuzzy clustering in alert correlation and

Bi-RNN algorithm. �e main contributions are as follows:

(1) Replaying the tra�c packet of the LLDoS 1.0 and LLDoS2.0

of DARPA2000 intrusion detection a�ack scenario [14] and

the tra�c packet (.pcap) of Intrusion Detection Evaluation

Dataset (CICIDS2017) [7] [20] through snort, generating

the raw alert data, further based on the �ve-tuple (A�ack-

Type, S IP, D IP, S Port, D Port) performs alert aggregation.

�e main purpose is to reduce the duplicate alert data of

the same a�ack event, and use the fuzzy clustering based

on a�ribute similarity to process the raw alert a�er aggre-

gation. Multi-stage a�ack chains are mined in the a�ack

scenario to form a multi-stage a�ack mode comparison

library.

(2) We improved the traditional deep learning algorithm, CI-

CIDS2017 dataset in our experiment is preprocessed by the

imbalanced learning strategy. We used the deep convolu-

tional neural network to learn the new feature representa-

tion of the dataset. �en the few-shot learning is performed

by the hierarchical SVM classi�er. �e classi�cation re-

sult was de�ned and divided the virtual a�acks and real

a�acks with the con�dence level. Finally, we constructed

the dataset of virtual a�acks and real a�acks, which is the

basic element library of the ”Feint A�ack” chain.

(3) Using the multi-stage a�ack and element a�ack event li-

brary obtained in the �rst and second stages, our method

of a�ack chain recovery technology based on Bi-RNN. Ac-

cording to the method, ”Feint A�ack” is simulated by the

real a�ack inserted in the normal causal a�ack chain, and

the addition of the real a�ack destroys the causal relation-

ship of the original a�ack chain. �e hidden feature is

obtained by Bi-RNN coding. Further we classi�ed the two

types of trainable samples. Finally, our work achieved the

purpose of detecting the ”Feint A�ack” accurately.

�e structure of this paper is organized as follows. Section 2 will

discuss the related work in this �eld. Section 3 will present ”Feint

A�ack” chains construction and detection methods through ”Feint

A�ack” chains model. Section 4 gives experimental and results.

Finally, conclusion is showed in Section 5.

2 RELATEDWORK
In this section, we review the related work about approaches that de-

tect multi-stage a�acks using IDS alerts. Generally, the approaches

may be classi�ed into two categories, namely causal correlation

analysis and cluster correlation analysis.

Causal Correlation Analysis
�e causal alert correlation method associates the alert informa-

tion according to the causal dependence between the a�acks. If

the result of one a�ack behavior creates a precondition for another

a�ack behavior, it is considered that there is a causal dependence

between the two a�ack behaviors, and the causal relationship is

utilized. Nguyen et al. [16] conducted an empirical game analysis of

the multi-stage interaction between the a�acker and the defender to

obtain a heuristic strategy under the Bayesian a�ack graph model.

Haas et al. [8] proposed a graph-based alert association (GAC) algo-

rithm to isolate a�acks and identify a�ack scenarios, and assemble

multi-stage a�acks from a large set of alerts. Pei et al. [17] proposed

a method which model multi-stage intrusion analysis as a commu-

nity discovery problem analysis system, and discovers any ”a�ack

communities” embedded within the graphs. A novel method based

on the Hidden Markov Model is proposed to predict multi-stage

a�acks using IDS alerts by Holgado et al. [11] �ey consider the

hidden states as similar phases of a particular type of a�ack. Kati-

pally et al. [12] use data mining to process alarms and input the

processed data into the hidden Markov model (HMM), ultimately

achieving the purpose of analyzing and predicting the behavior of

the a�acker.

Cluster Correlation Analysis
�e clustering alert correlation method associates alert infor-

mation with some identical or similar features, that is, clustering

by the similarity between alert a�ribute values, such as the same

destination address, the same a�ack source, a�ack means, etc. Ah-

madianramaki et al. [1] proposed a three-layer processing frame-

work that uses causal knowledge to correlate alerts, automatically

extracts causal relationships between alerts, builds the a�ack sce-

nario using Bayesian networks. And further predict the most likely

next a�ack behavior. Barzegar et al. [3] proposed approach recon-

structs a�ack scenarios by reasoning based on the evidences in

the alert stream. �e main idea of the proposed approach is to

identify the causal relation between alerts using their similarity.

Alvarenga et al. [2] approach applies process mining techniques on

alerts to extract information regarding the a�ackers behavior and

the multi-stage a�ack strategies they adopted. �e strategies are

presented to the network administrator in friendly high-level visual

models. Large and visually complex models that are di�cult to

understand are clustered into smaller, simpler and intuitive models

using hierarchical clustering techniques.

Bidirectional RNN
RNN is used in the �eld of natural language processing and its

main purpose is to process and predict sequence data [13]. �e

neural network memorizes the previous information, stores it in

the internal state of the network, and applies it to the calculation of

the current output, that is, the nodes between the hidden layers are

no longer connected but connected, and the hidden layer �e input

contains not only the output of the input layer but also the output

of the hidden layer at the previous moment. In the classical cyclic

2

neural network, the state of the transmission is one-way from the

back. �e bidirectional RNN [18] can memorize and encode the

context information, and the subject structure is the combination

of two unidirectional RNNs. At each time t , the input is provided to
both RNNs in opposite directions, and the output is determined by

the two unidirectional RNNs (which can be spliced or summed, etc.).

In this paper, the Bi-RNN algorithm is introduced into the coding

part of the multi-stage a�ack sequence. In the multi-stage a�ack

scenario, an a�ack chain can be analogized into a sequence. Each

atomic a�ack is equivalent to one word. By encoding the a�ack

sequence through Bi-RNN, the causal association of the a�ack

sequence can be preserved to the greatest extent, and achieve the

goal of reducing the dimension.

�e multi-stage a�ack detection based on causal correlation

requires a large amount of expert knowledge to support, and the ac-

quisition of expert knowledge is very di�cult, and can not discover

new a�ack behavior. In this paper, the fuzzy clustering method

based on a�ribute similarity is used to mine the multi-stage a�ack

mode. �e previous work of detection of the multi-stage a�ack

chain does not consider the special type of ”Feint A�ack” chain,

and the length of the constructed a�ack chain is too long, which

makes it di�cult to retain its inherent causal relationship in further

analysis and pre-processing. �erefore, our research is based on

previous work. It mainly achieve the goal of de�ning and dividing

virtual a�acks and real a�acks, builds the a�ack chain based on

causal correlation and Bi-RNN model, further obtains the trainable

a�ack sample set, and �nally obtains the a�ack chain detection

classi�er through training.

3 ”FEINT ATTACK” CHAINS CONSTRUCTION
AND DETECTION METHOD

In order to achieve the ”Feint A�ack” chain detection based on the

virtual a�ack chain and real a�ack chain, we try to solve the prob-

lem through proposed new detection method in this section which

mainly utilizes fuzzy clustering and Bi-RNN algorithm. �e input

to our model is raw data stream (�e packet format is .dump and

.pcap) of LLDoS1.0 and LLDoS2.0 of DARPA2000 and CICIDS2017

of Canadian Institute for Cybersecurity, and the output is the result

of the classi�er for detect ”Feint A�ack”. �at is, whether there is a

”Feint A�ack” behavior in a multi-stage a�ack sequence. We will

describe in detail the implementation of each algorithm proposed

in this paper, and show how to achieve our model to construct and

detect the ”Feint A�ack” chain. Framework of bidirectional RNN

based few-shot training for detecting multi-stage a�ack model is

shown in Figure 1.

Using the captured real-time data packet or replaying the classi-

cal a�ack dataset by snort to obtain the raw alerts. �e multi-stage

a�ack mode is mined by the fuzzy clustering method based on

a�ribute similarity, and the virtual a�ack and real a�ack are de-

�ned and divided by the few-shot deep learning model [6]. �e

real a�ack is embedded into the a�ack chain by Bi-RNN coding,

and the ”Feint A�ack” chain is constructed. Further we classi�ed

the two types of trainable samples. Finally, our work achieved the

purpose of detecting the ”Feint A�ack” accurately.

Figure 1: Framework of ”Feint Attack” Chains Construction
and Detection Method.

3.1 Alert Correlation Based on Fuzzy
Clustering

Definition 1. IDS alert is a kind of alert generated when a�ack
operations occur. It shows security situation of the entire network. We
represent IDS alert as alert = a1,a2, ...an , where ai indicates the ith
alert and is a nine-tuple:

ai = (Timestamp, Protocal , S IP ,D IP , S Port ,D Port ,

AttackType,Classi f ication, Priority)

Definition 2. Raw alert refers to a single a�ack action per-
formed by the a�acker in the network. It may be an alarm generated
directly by the IDS system a�er the scan of the host service or the
exploitation of a vulnerability of the host, without any processing.

Definition 3. An a�ack sequence is a sequence of IDS alerts
that is produced by an a�acking process. We represent the a�ack
sequence as AS = {a1,a2, ...an }.

Alert Aggregation
We found that there are many a�ack type, source IP, destina-

tion IP, source port and destination port with the same or similar

alerts in a certain time window, which are recorded as �ve-tuple

(AttackType, S IP ,D IP , S Port ,D Port). According to the speci�c
circumstances of the alert, this paper is divided into the following

modes:

a) (AttackType, S IP ,D IP , S Port ,D Port) are the same, that is

the same a�ack event is alerted multiple times.

b) (AttackType, S IP ,D IP , S Port) is the same, an a�acker scans

the ports of another host and queries the services it runs.

c) (AttackType, S IP) is the same, D IP is on the same network

segment, and an a�acker scans the target network segment to query

the surviving hosts.

d) �e AttackType is di�erent, S IP and D IP are same,that is

belongs to the springboard a�ack.

Bymergingmultiple alerts caused by the same security event into

one alert record, the alert aggregation can greatly reduce the num-

ber of raw alerts and reduce the number of alerts to be associated,

which can greatly reduce the time required for alert correlation.

3

�e complexity of the resulting multi-stage a�ack model is greatly

reduced. It is more conducive to us to explore the phenomenon of

”Feint A�ack”.

We de�ned the Alert Aggregation Rate as follows:

Alert Aддreдation Rate =
Raw Alerts −Output Alerts

Raw Alerts
(1)

Attribute Similarity Calculation
• A�ack Event �e a�ack events in the IDS alerts are clas-

si�ed based on the IKC model. From the a�acker’s point of

view, the a�acks in the subsequent stages aremore complex

and more purposeful, and the acquired rights are higher.

In the a�ack event dimension, the similarity formula for

ai , aj belonging to an a�ack sequence is as follows:

Faler t event (ai ,aj) =


1,∆α = 0or 1

e−(∆α−3/2),∆α > 1

0, else
(2)

∆α = α(ai .alert event) − α(aj .alert event)
Indicates the stage where the ai a�ack event is located,

indicating the di�erence between the two alarms. If the

alarm is 0 or 1, the greater the similarity, the smaller the

similarity is. �e upper limit of similarity is 1, and the

minimum is 0.

• IP Address We use the method of comparing the same

number of bits of an IP address to measure the similarity

of IP addresses.

FI P (ai ,aj) =
N

32

(3)

where N =max{H (ai .sIP ,aj .dIP),H (ai .sIP ,aj .sIP),
H (ai .dIP ,aj .dIP)}

• Port �e maximum value of the port is 65535, so the port

di�erence value can be normalized to represent.

FPor t (ai ,aj) = 1 − |p1 − p2|
65535

(4)

• Timestamp In a multi-stage a�acking process, the time

interval is relatively short when two a�acks are in the

same phase, and the time interval may be longer when

two a�acks occur in di�erent phases, and when there is a

long latency following the previous access. For this reason,

we do not set time window for alert logs. �e similarity

function of the timestamp property is as follows:

FT ime (ai ,aj) = e−∆t

∆t = ai .time − aj .time .
(5)

�e complete similarity is calculated using the following function:

F (ai ,aj) =δaler t event Faler t event (ai ,aj) + δipFip (ai ,aj)+
δpor t Fpor t (ai ,aj) + δt imeFt ime (ai ,aj)

(6)

δ is the weight of the a�ribute value.

Scan the alert sets a�er aggregating, analyze each alert ai in
turn, and calculate the membership degree of each classi�ed result

of ai . �e speci�c calculation method is to calculate the similarity

function of all alerts in ai and a cluster. �e maximum degree of

similarity is used as the membership of this class of ai . Before

calculating the similarity, �rst determine the a�ack event of the

alert with the latest timestamp in the cluster and the a�ack event

of ai , whether the number of stages corresponding to the a�ack

event of the la�er is less than the number of stages corresponding

to the a�ack event of the former is greater than or equal to -1, if

it is greater than or equal to -1, we calculate the similarity of two

alerts using a similarity function with multidimensional a�ributes.

If less than -1, we calculate the membership of ai belonging to the

next cluster. �e largest membership degree of ai belonging to the

existing clusters is r . When r is greater than the threshold value λ,
it is considered that the alerts in the clusters corresponding to the

alerts ai and r are triggered by the same a�ack process. If r is less
than the threshold value λ, ai is used as a new cluster, which may

be the beginning of a new a�ack process. �e speci�c algorithm is

described as follows:

Algorithm: Fuzzy Clustering Algorithm Process

Input: Alerts = {a1,a2, ...,an }, and a�ack sequence set

ASS = ϕ
Output: A�ack sequence set ASS = {AS1,AS2, ...,ASq },

where each a�ack sequence ASi =< a1,a2, ...,an >.
1©For each raw alert ai , calculate its membership to each a�ack

sequence ASi . If the a�ack sequence set ASS = {AS1,AS2, ...,ASq }
is empty, then make AS1 = {ai }, and repeat step 1©. If ASS is not

empty, then use AS1 in the ASS set in step 2©.

2©Scan a�ack sequence ASi =< a1,a2, ...,ak >. First determine

whether the phase of ASi (the phase in which the latest timestamp

inASi occurs). If the answer is yes, go to step 3©, and if the answer

is no, then go to step 4©.

3©Calculate the similarity between ai and each element in ASi
separately using the similarity function and use the maximum

value of the results as a membership degree of ai to ASi . If the
membership degree is greater than or equal to the preset threshold

value λ, then add ai to a�ack sequence ASi = {a1,a2, ...,ak ,ai }
and go to step 4©.

4©Take the next ASi in ASS , if it exists, repeat step 2©; if not, it

means that all the a�ack sequences in the ASS have been scanned.

If the membership degree of ai to every a�ack sequence is less

than λ, then create a new element ASr = {ai } and add ASr to

ASS = {AS1,AS2, ...,ASq ,ASr }, before going to step 5©.

5©Repeat step 1© to step 4© zbove until all Alerts are analyzed.

3.2 Building the Virtual-Real Lib
Definition 4. Virtual A�ack and Real A�ack: A virtual at-

tack is de�ned as an a�ack that is accurately identi�ed by IDS or
an a�ack classi�er. A real a�ack is a more concealed a�ack (which
may be a normal behavior) or a new type of a�ack. �e IDS does not
generate an alert or is judged to be a normal behavior by the classi�er.

�e input to this section is the CICIDS2017 dataset, which has 83

statistical features such as duration, number of packets, number of

bytes, packet length and so on. �e output is the classi�cation result

of the a�ack, which lays the foundation for the next step of dividing

the virtual a�acks and real a�acks. It mainly studies existing a�ack

4

detection algorithms and improves traditional deep learning meth-

ods for a�ack detection. Based on deep learning and few-shot deep

learning algorithms, the raw alerts are preprocessed by unbalanced

learning strategies, such as random downsampling and SMOTE

oversampling techniques, combined with deep convolutional neural

networks to select dataset features, and then through hierarchical

SVM classi�ers to build the optimal CICIDS2017 classi�er. �e

network structure is shown in Table 1.

Table 1: CNN Architecture for Feature Extraction and SVM
for Classi�cation

Index Layer Output ShapePad&Stride
1 Conv2D(32 �lter,size:3×3) 10×10×32 1,1

2 Conv2D(32 �lter,size:3×3) 10×10×32 1,1

3 Maxpooling2D 5×5×32 2,2

4 Conv2D(64 �lter,size:3×3) 5×5×64 1,1

5 Conv2D(64 �lter,size:3×3) 5×5×64 1,1

6 Fla�en 1600 –

7 Fully Connected 512 –

8 SVM 5 –

�e results of CICIDS2017 classi�er are �ltered, and to enhance

the con�dence of the virtual a�acks and real a�acks, we selected

the a�acks that were judged to be omissive judgement in ten tests,

that is, the a�ack events identi�ed as normal events as real a�ack

sample set. �e correctly classi�ed a�ack events are used as a set

of virtual a�ack samples. �e virtual a�acks and real a�acks are

respectively extracted from the original dataset and store them in

the �le to form a virtual a�ack and real a�ack sample database,

that is, the basic element library of the a�ack chain construction,

we de�ned the concept of the virtual reality a�ack con�dence as

the probability virtual a�ack and real a�ack samples are judged as

normal event. �e lower the probability value of the virtual a�ack,

the greater the probability that the a�ack is a virtual a�ack, and the

high probability value of the real a�ack indicates that the a�acker

is more likely to be a�acked by the a�acker. �e division of virtual

a�acks and real a�acks is shown in Table 2. �e red background in

the table is real a�acks, and the blue background is virtual a�acks.

Table 2: Divide the virtual attack and real attack

Confusion Matrix Predicted Category Recall
NormalProbe DoS U2L R2L

Actual Category

Normal 60352 123 103 9 6 0.996

Probe 387 3501 260 0 18 0.840

DoS 5686 82 224081 0 4 0.975

U2R 73 13 17 119 6 0.522

R2L 7018 4 6 1 9160 0.566

Precision 0.821 0.940 0.998 0.9220.996Acc:95.6%

Over-Sampling: SMOTE
Less class-sample combining oversampling technique referred

to as SMOTE algorithm, it is by Chawla.N [19], who proposed one

based on the traditional method of oversampling li�le wood class

like a simple copy of the di�erent new oversampling. In the training

data S , xi is the minority samples. �e �rst step to calculate the xi
similar k-nearest neighbor set Pi . From Pi random selection of a

sample, it may be set to xa , the di�erence between the xi and xa
corresponding to the a�ribute q is denoted as di f f (q) = xaq − xiq .
It can be concluded that the synthesis of minority class of sample

fiq mathematical expressions is such as 7.

fiq = xi + (xaq − xiq) ∗ rand(0, 1) (7)

where rand (0,1) is expressed the random number in (0,1). �en

the operation of the above process is repeated according to the

beginning of the set of over sampling rate, and the synthesis of a new

minority sample is added to the initial training sample to increase

the number of minority samples. And the degree of imbalance will

greatly reduce and get the new training samples, then there is basic

balance between majority classes and minority classes in the new

training data set. get the new training sample multi class sample

and small sample in the number of basic balance. Finally, the new

training data set are classi�ed by the classi�er and the results are

obtained. �e process is shown in Figure 2.

Figure 2: Schematic diagram of SMOTE algorithm.

3.3 ”Feint Attack” Chains Construction and
Detection Model

Definition 5. ”Feint A�ack” Chains: By analyzing the various
situations of ”Feint A�ack”, it is summarized as a multi-stage a�ack
mode of virtual a�acks and real a�acks.

1) �e a�acker hides the a�ack trajectory, and sometimes uses

the method of ”make a feint to the east but a�ack in the west” to

perform a large number of a�acks on the vital hostA, such as DDoS

a�acks, generating a large number of alerts, while the real target

host is B. �e operation and maintenance personnel handle the

DDoS for A. A�acks against B when the a�ack does not take into

account other alerts;

2)�e a�acker uses a highly concealed a�ack in some steps of the

multi-stage a�ack sequence, or uses an advanced a�ack to prevent

the IDS system from generating an alert to confuse the operation

andmaintenance personnel. �e lack of some processes in themulti-

stage a�ack process, resulting in the inability to completely restore

the entire a�ack path (such as using DNS queries in LLDoS2.0

instead of IPsweep in LLoS1.0).

Our a�ack chain recovery technique which based on Bi-RNN.

We use the a�ack chain established in the �rst stage and the real

a�ack in the second stage to embed the atomic a�ack event into

the a�ack chain through Bi-RNN coding to construct the a�ack

chain. �e forward RNN records the information of the a�ack

5

Figure 3: ”Feint Attack” Chains Construction.

chain from the cause and the result, and the reverse RNN records

the information of the a�ack chain from the result to the cause to

ensure the maximum retention of the correlation information. �e

process is shown in Figure 3.

Finally, we label the sample set of feint a�ack and non-feint

a�ack chains, and further classify the a�ack chain samples. Based

on the machine learning algorithm, a special a�ack detection model

based on the virtual a�ack and real a�ack chain is constructed by

training the feint a�ack and non-feint a�ack chain samples, and

the model parameters for the data set are determined. Further,

the learning model integration of speci�c weight enhancement is

carried out by voting method to improve the accuracy of model

detection. Finally, we achieve the purpose of accurately identifying

the ”Feint A�ack”.

4 EXPERIMENTAL AND RESULTS
In this section, we discuss the experiment results and give a compre-

hensive evaluation of bidirectional RNN-based few-shot training

for detecting multi-stage a�ack model proposed in this paper.

4.1 Experimental Setup
A. Experimental Environment
We choose same hardware and so�ware con�gurations when

carrying out the experiments. Our experiment is conducted on

the operating system of windows 10 on the hardware environment

Intel(R) Core(TM) i7-7500U CPU, 8GB RAM and IT hard disk. We

utilize the programming language python 3.5. It can be found the

main items of our hardware and so�ware con�guration in Table 3.

�e network topology of DARPA2000 is shown in the following

Figure 4, where the network is divided into DMZ network and Inside
network.

Figure 4: DARPA2000 network topology.

B. Experimental Data

Algorithm: ”Feint A�acks” Construction and Detection Model

Input: the CICIDS2017 dataset
Output: the classi�er of the ”feint a�ack” chain
Step 1: Create CNN-SVM model 1

1. Add 1
st

and 2
nd

convolution layers with 32 �lters of 3×3,
followed by max pooling layer of size 2×2.
2. Add 3

rd
and 4

th
convolution layers with 64 �lters of 3×3,

followed by �a�en layer and the out put of which is a temp

vector of 1600×1.
3. Add fully connected to get a vector(512×1), followed by a

H-SVMs classi�er.

Step 2: Build the Virtual-Real Lib
For ten times of test in model 1

I f a a�ack is predicted to be Normal
add the a�ack with the probability of Normal to
Real Lib

Else i f a a�ack is predicted correctly

add the a�ack with the probability of Normal to
Virtual Lib

Sort Real Lib and Virtual Lib by probability in ascending and

descending order

Step 3: Create Bi-RNN model 2
1. Create a causal correlation matrix.

2. Construct a�ack chains based on the matrix.

3. Encode the a�ack chain using Bi-RNN.

Step 4: Create classi�er on ”feint chain” model 3
1. Divide training sets and test sets(8:2).

2. Train and validate model.

3. Test model.

Table 3: Hardware and So�ware Con�guration

No. Hardware or so�ware Type

1 Operating system Windows 10

2 Programming language Python3.5

3 Development environment JetBrains PyCharm 2018.1.4

4 CPU Inter(R) Core(TM)i7-7500U

5 RAM 8GB

6 Disk IT hard disk

• Sadmind Exploit for a DDoS A�ack[DARPA2000]:

�e DARPA2000 dataset is a collection of intrusion scenario

correlations from MIT Lincoln lab. It is widely used to verify the ef-

fectiveness of various alert event correlation algorithms. LLDOS1.0

includes a complete distributed deny service (DDOS) a�ack sce-

nario, the multi-stage a�ack consists of 5 steps. Detect, hack, install

trojan mstream DDoS programs and perform remote DDoS a�acks

on target servers. �e a�ack process is shown in Figure 5. �e

a�ack mainly utilizes the bu�er over�ow vulnerability of the sad-

mind program on the solaris platform. As long as the a�acker can

correctly �nd out and overwrite the stack of the executing sadmind

program, the a�acker can successfully invade the host and obtain

the manager from the remote. Permission to execute arbitrary

program code, including installing DDoS so�ware and launching

DDoS a�acks.

6

Figure 5: �e attack scenario of LLDoS1.0.

• Intrusion Detection Evaluation Dataset [CICIDS2017]:

�eCanadian Institute for Cybersecurity published the CICIDS2017

dataset in 2017. �e advantage of this data: time is near, the bench-

mark data set covers the 11 criteria required, and all previous IDS

data sets cannot cover all 11 standards. Containing benign tra�c

and the latest common a�acks, the data capture period begins at 9

am on Monday, July 3, 2017 and ends at 5 pm on Friday, July 7, 2017

for a total of 5 days. Monday is a normal day and only includes

benign tra�c. A�acks implemented include brute force FTP, brute

force SSH, DoS, Heartbleed, web a�ack, in�ltration, botnet and

DDoS. �ey are executed on Tuesday, Wednesday, �ursday and

Friday.

C. Evaluation Criteria
�ere are many evaluation indicators used in intrusion detection

systems. Although this paper only studies the multi-stage a�ack

identi�cation, it also uses the commonly used indicators in the in-

trusion detection �eld, namely the completeness rate and accuracy.

Suppose the total number of a�acks included in the test data set is

N , the number of a�acks identi�ed by the recognition method is

RN , and the number of a�acks identi�ed in these test data sets is

actually R. �e de�nitions of these indicators are as follows:

1) Completeness Rate: �e completeness rate is the complete-

ness of the description method, that is, whether all a�acks can be

found. �e calculation method for multi-stage a�ack recognition

completeness rate is:

Completeness Rate = R/N (8)

2) Accuracy Rate: Accuracy rate is the correctness of the descrip-

tion method, that is, how many of the identi�ed a�acks are correct.

�e calculation method for multi-stage a�ack recognition accuracy

is:

Accuracy Rate = R/RN (9)

4.2 Experimental Result and Evaluation
A. Alert Correlation Based on Fuzzy Clustering
Use the snort’s command sudo snort -r /LLS DDOS 1.0-inside.

dump -l /home -A fast -c /etc/snort/snort.conf in Linux to re-

play the original tra�c packets from LLDoS1.0 and LLDoS2.0 of

DARPA2000 and CICIDS2017. �en, we got the raw alerts of snort

in Figure 6.

Figure 6: �e Raw Alert of Snort.

�rough the network tra�c packet analysis so�ware Wireshark,
we analyzed all tra�c packets (including normal background tra�c)

in the DMZ and Inside areas of LLoS1.0, and the packets containing

only a�ack tra�c in each of the �ve a�ack phases of the DDoS

a�ack. �e analysis results are shown in Figure 7. We tracked

Figure 7: �e speci�c content of the attack tra�c packet in
wireshark.

the TCP �ow of the key a�ack steps and saw that the a�acker

performed a large number of IP sweep (ICMP echo request) on the

target network segment, among which 18 hosts survived (ICMP

echo reply). �e next step is Sadmind ping, querying the Sadmind

vulnerability and verifying that the service is running on the surviv-

ing host. �ere are 6 hosts that meet this condition. Bu�er over�ow

a�acks on these 6 hosts invaded the host, and 3 hosts successfully

invaded, namely: 172.16.115.20, 172.16.112.10 and 172.16.112.50.

Log in to these three hosts using the rsh service telnet, upload and

install the DDoS Daemon (including mstream server and mstream

master). Among them, the a�acker installed server and master on

7

172.16.115.20, and only installed server on 172.16.112.10 and 172.16.

112.50. It can be seen that 172.16.115.20 is the jump host of the

a�acker in the internal network. Finally, log in to 172.16.115.20,

check the port mstream daemon port 6723, execute the mstream

command, set the target IP to 131.84.1.31, and use the forged IP to

initiate the DDoS a�ack for 5s.

Combine the two-part alerts (DMZ: 7024 and Inside: 10145)

obtained by using snort, and perform alert aggregation on 17169

raw alerts to obtain 3222 alerts. �e alert aggregation rate reaches

81.23%. �e result is shown in Table 4.

Table 4: Alert Aggregation

Raw Alerts Amount Aggregation Rate(%)

DMZ 7024 –

Inside 10145 –

Total 17169 –

Alert Aggregation 3222 81.23

Using the fuzzy clustering algorithm proposed in Section 3.1,

3222 alerts are clustered, and a total of 944 a�ack sequences are

obtained. It contains a large number of sequences of length 1

(indicating that there are a large number of fragmentation alerts in

the alert clustering).

Table 5: Attack type in Cluster A2

No. Attack type

1 ICMP PING

2 FTP Bad login

3 TELNET Bad Login

4 RPC sadmind UDP PING

5 RPC sadmind query with root credentials a�empt UDP

6 RPC sadmind UDP NETMGT PROC SERVICE

CLIENT DOMAIN over�ow a�empt

7 RSERVICES rsh root

8 SNMP request udp

9 BAD-TRAFFIC loopback tra�c

A�er deleting the sequence of length 1, a total of 195 multi-stage

a�ack sequences are obtained. A�er extracting the multi-stage

a�ack mode, nine sequence pa�erns are obtained. Among them,

the alerts including the multi-stage a�ack process in LLDOS1.0 are

shown in the following Table 5. It can be concluded that the a�ack

route is composed of three independent paths in Figure 8.

B. Building the Virtual-Real Lib
By using the downsampling and SMOTE algorithms, the number

of our data sets becomes as shown in Table 6.

�e model using only CNN and using few-shot deep learning

model are shown in the Figure 9. It can be seen that CNN is easy to

cause over-��ing, and the model of few-shot deep learning is used

to avoid over-��ing.

�e result of few-shot deep learning model is shown in Table 7.

We can see that ourmethod has signi�cantly improved the detection

rate of Minority class-sample (U2R and R2L).

Figure 8: �e LLDoS attack process analyzed by Wireshark.

Figure 9: �e iteration of the model.

We �nd the fact that CNN-SVM with SMOTE get the best recall

and precision. CNN model without SMOTE has lower recall when

the classify U2R and R2L tra�c. �e reason of that the amount of

U2R and R2L packages is too lower than other packages what we

have mentioned above. But the recall to U2R and R2L tra�c has

been greatly improved by introduced SMOTE. �e result can be

seen in Figure 10.

Figure 10: Comparison of precision and recall.

�e evaluation criteria of the number of iterations is shown in

Figure 11.

�e Virtual-Real Lib contains 20,718 real a�acks and 189,826

virtual a�acks. In order to verify the reliability of our results, we

got all of real a�acks and Normal to test, the results show that more

than 99% of the real a�acks are missed as normal.

C. Build Feint Lib and Detect the ”Feint A�ack”
8

Table 6: Balanced dataset

Title of Dataset Data Classi�ed

BenignDoSHulkPortScanDDoSDoSGoldenEyeFTP-PatatorSSH-PatatorDoSSlowLorisDoSSlowHTTP Test Bot BruteForceXSSIn�ltrationSQLInjectionHeartbleed
Train Dataset 1886428 184858 127144 33468 8234 6350 4717 4636 4399 1572 1205 521 28 16 8

Pre-processed 17965 12323 8476 6693 8234 6350 4717 4636 4399 1572 1205 521 280 160 80

Table 7: �e result of few-shot deep learning model

Confusion Matrix Predicted Category Recall
BenignProbe DoS U2R R2L

Actual

Benign 60352 123 103 9 6 0.996

Probe 387 3501 260 0 18 0.840

DoS 5686 82 224081 0 4 0.975

U2R 73 13 17 119 6 0.522

R2L 7018 4 6 1 9160 0.566

Precision 0.821 0.940 0.998 0.9220.996Acc:0.96

Figure 11: �e e�ect of the number of iterations on the ex-
perimental results.

Feint Lib contains 11758 records of ”Feint A�ack” chains, and

there has 20 a�acks in each record. �e number of training sets

is 9408 and the number of testing sets is 2350. �e dataset can be

seen in Figure 12. Label 1 means the chain is a ”Feint A�ack” chain.

Label 0 means the chain is a common chain.

Figure 12: �e Feint Lib.

�e number of real a�acks in the a�ack chain are 1 to 7. Among

them, the number of a�ack chains containing one real a�ack is

3371, the number of a�ack chains containing two real a�acks is

3248, the number of a�ack chains containing three real a�acks is

1811, the number of a�ack chains containing four real a�acks is

672, the number of a�ack chains containing �ve real a�acks is 200,

the number of a�ack chains containing six real a�acks is 50, the

number of a�ack chains containing seven real a�acks is 11, and the

number of a�ack chains containing eight real a�acks is one.

Finally, we chose best c = 0.5 and best д=1 to get the best acc =
78.8764% of cross validation. We got 75.23% accuracy on the test

set. It is shown in Figure 13.

Figure 13: �e result of detecting ”Feint Attack” chain.

5 CONCLUSION
In this paper, aiming at the ”Feint A�ack” mode in APT a�ack,

we proposed new detection method which mainly utilizes fuzzy

clustering and Bi-RNN algorithm. Firstly, by analyzing the existing

”Feint A�ack”, we de�ned virtual a�acks and real a�acks as the basic

a�ack events that constitute the ”Feint A�ack” chain. In the a�ack

scenario, the fuzzy clustering method based on a�ribute similarity

is used to minemulti-stage a�ack chains. Amulti-stage a�ackmode

comparison library is formed, and a few-shot deep learning model is

de�ned and divided into virtual a�acks and real a�acks to construct

a dataset of atomic a�ack events. �en, the atomic a�ack event

is embedded into the a�ack chain through Bi-RNN coding, and

the ”Feint A�ack” chain is constructed to form the ”Feint A�ack”

dataset. Finally, the a�ack chain samples containing the feint a�ack

behavior and the non-feint a�ack behavior are further classi�ed

to achieve the purpose of accurately identifying the ”Feint A�ack”.

Our innovation lies in the �rst use of bidirectional RNN coding to

construct the a�ack chain to ensure maximum retention of causal

information. We veri�ed our method by using the LLDoS1.0 and

LLDoS2.0 of DARPA2000 and CICIDS2017 of Canadian Institute for

Cybersecurity. �e experimental results show that our method can

derive the multi-stage a�ack sequence from the alert correlation

by fuzzy clustering, and the ”Feint A�ack” behavior is mined from

the a�ack chains. �e a�ack sequence is encoded by Bi-RNN, and

achieve 75.23% accuracy to identify ”Feint A�ack”.Research on the

9

key technologies of behavior detection, and realize the prototype

system based on the virtual a�ack and real a�ack chain to achieve

zero breakthrough in detecting such a�acks.

ACKNOWLEDGMENTS
�is research is supported by the Fundamental Research Funds for

the Central Universities of China under Grants (No.2018JBZ103),

Science and Technology on Information Assurance Laboratory (No.

614200103011711), the National Natural Science Foundation of

China (No.61672092), Beijing Excellent Talent Training Project

(No.B-MK2017B02-2), the Fundamental Research Funds for the Cen-

tral Universities (No.2017RC016), and China Scholarship Council

(CSC No.201807095014).

REFERENCES
[1] Ali Ahmadian Ramaki and Abbas Rasoolzadegan. 2017. Causal knowledge anal-

ysis for detecting and modeling multi-step a�acks. Security and Communication
Networks (02 2017).

[2] Sean Carlisto De Alvarenga, Sylvio Barbon, Rodrigo Sanches Miani, Michel

Cukier, and Bruno Bogaz Zarpelo. 2017. Process mining and hierarchical clus-

tering to help intrusion alert visualization. Computers and Security 73 (2017),

S0167404817302584.

[3] Mahdiyeh Barzegar and Mehdi Shajari. 2018. A�ack Scenario Reconstruc-

tion Using Intrusion Semantics. Expert Systems with Applications (2018),

S0957417418302689.

[4] Parth Bha�, Edgar Toshiro Yano, and Per Gustavsson. 2014. Towards a Frame-

work to Detect Multi-stage Advanced Persistent �reats A�acks. In IEEE Inter-
national Symposium on Service Oriented System Engineering.

[5] M. H. Bhuyan, D. K. Bha�acharyya, and J. K. Kalita. 2014. Information metrics

for low-rate DDoS a�ack detection: A comparative evaluation. In International
Conference on Contemporary Computing.

[6] Md Moin Uddin Chowdhury, Chunsheng Xin, Jiang Li, and Hongyi Wu. 2017. A

Few-shot Deep Learning Approach for Improved Intrusion Detection.

[7] Canadian Institute for Cybersecurity. 2017. Intrusion Detection Evaluation

Dataset (CICIDS2017).

[8] Ste�en Haas and Mathias Fischer. 2018. GAC: graph-based alert correlation for

the detection of distributed multi-step a�acks. 979–988.

[9] AdamHahn, Roshan K.�omas, Ivan Lozano, andAlvaro Cardenas. 2015. Amulti-

layered and kill-chain based security analysis framework for cyber-physical

systems. International Journal of Critical Infrastructure Protection 11, C (2015),

39–50.

[10] D. He, S. Chan, Y. Zhang, C. Wu, and B. Wang. 2014. How E�ective Are the

Prevailing A�ack-Defense Models for Cybersecurity Anyway? IEEE Intelligent
Systems 29, 5 (Sep. 2014), 14–21.

[11] Pilar Holgado, Victor A. Villagra, and Luis Vazquez. 2017. Real-time multi-

step a�ack prediction based on Hidden Markov Models. IEEE Transactions on
Dependable and Secure Computing PP, 99 (2017), 1–1.

[12] Rajeshwar Katipally, Yang Li, and Anyi Liu. 2011. A�acker behavior analy-

sis in multi-stage a�ack detection system. In Workshop on Cyber Security and
Information Intelligence Research.

[13] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-

Aware Neural Language Models. Computer Science (2016).
[14] MIT Lincoln Lab. 2000. DARPA intrusion detection scenario speci�c datasets.

[15] Meicong Li, Huang Wei, Yongbin Wang, Wenqing Fan, and Jianfang Li. 2016.

�e study of APT a�ack stage model. In IEEE/ACIS International Conference on
Computer and Information Science.

[16] �anh H. Nguyen, MasonWright, Michael P. Wellman, and Satinder Baveja. 2017.

Multi-Stage A�ack Graph Security Games: Heuristic Strategies, with Empirical

Game-�eoretic Analysis. In Workshop.
[17] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Wang Fei, Zhiwei

Zhang, Si Luo, Xiangyu Zhang, and Dongyan Xu. 2016. HERCULE: a�ack story

reconstruction via community discovery on correlated log graph. In Conference
on Computer Security Applications.

[18] Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural net-

works. 45, 11 (1997), 2673–2681.

[19] Jos A. Sez, Julin Luengo, Jerzy Stefanowski, and Francisco Herrera. 2015.

SMOTE��IPF: Addressing the noisy and borderline examples problem in imbal-

anced classi�cation by a re-sampling method with �ltering. Information Sciences
291, 5 (2015), 184–203.

[20] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward

Generating a New Intrusion Detection Dataset and Intrusion Tra�c Charac-

terization. In 4th International Conference on Information Systems Security and

Privacy.
[21] Tarun Yadav and Arvind Mallari Rao. 2015. Technical Aspects of Cyber Kill Chain.

10

	Abstract
	1 Introduction
	2 Related Work
	3 "Feint Attack" Chains Construction and Detection Method
	3.1 Alert Correlation Based on Fuzzy Clustering
	3.2 Building the Virtual-Real Lib
	3.3 "Feint Attack" Chains Construction and Detection Model

	4 Experimental and Results
	4.1 Experimental Setup
	4.2 Experimental Result and Evaluation

	5 Conclusion
	Acknowledgments
	References

