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Abstract. In rendez-vous protocols an arbitrarily large number of indis-
tinguishable finite-state agents interact in pairs. The cut-off problem asks
if there exists a number B such that all initial configurations of the proto-
col with at least B agents in a given initial state can reach a final config-
uration with all agents in a given final state. In a recent paper [17], Horn
and Sangnier prove that the cut-off problem is equivalent to the Petri net
reachability problem for protocols with a leader, and in EXPSPACE for
leaderless protocols. Further, for the special class of symmetric protocols
they reduce these bounds to PSPACE and NP, respectively. The problem
of lowering these upper bounds or finding matching lower bounds is left
open. We show that the cut-off problem is P-complete for leaderless pro-
tocols, NP-complete for symmetric protocols with a leader, and in NC
for leaderless symmetric protocols, thereby solving all the problems left
open in [17].
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1 Introduction

Distributed systems are often designed for an unbounded number of participant
agents. Therefore, they are not just one system, but an infinite family of systems,
one for each number of agents. Parameterized verification addresses the problem
of checking that all systems in the family satisfy a given specification.

In many application areas, agents are indistinguishable. This is the case in
computational biology, where cells or molecules have no identities; in some se-
curity applications, where the agents’ identities should stay private; or in ap-
plications where the identities can be abstracted away, like certain classes of
multithreaded programs [15,2,31,3,18,25]. Following [3,18], we use the term repli-
cated systems for distributed systems with indistinguishable agents. Replicated
systems include population protocols, broadcast protocols, threshold automata,
and many other models [15,2,11,7,16]. They also arise after applying a counter
abstraction [28,3]. In finite-state replicated systems the global state of the sys-
tem is determined by the function (usually called a configuration) that assigns
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to each state the number of agents that currently occupy it. This feature makes
many verification problems decidable [4,10].

Surprisingly, there is no a priori relation between the complexity of a param-
eterized verification question (i.e., whether a given property holds for all initial
configurations, or, equivalently, whether its negation holds for some configura-
tion), and the complexity of its corresponding single-instance question (whether
the property holds for a fixed initial configuration). Consider replicated systems
where agents interact in pairs [15,17,2]. The complexity of single-instance ques-
tions is very robust. Indeed, checking most properties, including all properties
expressible in LTL and CTL, is PSPACE-complete [9]. On the contrary, the com-
plexity of parameterized questions is very fragile, as exemplified by the following
example. While the existence of a reachable configuration that populates a given
state with at least one agent is in P, and so well below PSPACE, the existence
of a reachable configuration that populates a given state with exactly one agent
is as hard as the reachability problem for Petri nets, and so non-elementary [6].
This fragility makes the analysis of parameterized questions very interesting, but
also much harder.

Work on parameterized verification has concentrated on whether every ini-
tial configuration satisfies a given property (see e.g. [15,11,3,18,7]). However,
applications often lead to questions of the form “do all initial configurations
in a given set satisfy the property?”, “do infinitely many initial configurations
satisfy the property?”, or “do all but finitely many initial configurations satisfy
the property?”. An example of the first kind is proving correctness of popula-
tion protocols, where the specification requires that for a given partition I0, I1
of the set of initial configurations, and a partition Q0, Q1 of the set of states,
runs starting from I0 eventually trap all agents within Q0, and similarly for I1
and Q1 [12]. An example of the third kind is the existence of cut-offs ; cut-off
properties state the existence of an initial configuration such that for all larger
initial configurations some given property holds [8,4]. A systematic study of the
complexity of these questions is still out of reach, but first results are appearing.
In particular, Horn and Sangnier have recently studied the complexity of the
cut-off problem for parameterized rendez-vous networks [17]. The problem takes
as input a network with one single initial state init and one single final state fin,
and asks whether there exists a cut-off B such that for every number of agents
n ≥ B, the final configuration in which all agents are in state fin is reachable
from the initial configuration in which all agents are in state init .

Horn and Sangnier study two versions of the cut-off problem, for leaderless
networks and networks with a leader. Intuitively, a leader is a distinguished agent
with its own set of states. They show that in the presence of a leader the cut-off
problem and the reachability problem for Petri nets problems are inter-reducible,
which shows that the cut-off problem is in the Ackermannian complexity class
Fω [22], and non-elementary [6]. For the leaderless case, they show that the prob-
lem is in EXPSPACE. Further, they also consider the special case of symmetric
networks, for which they obtain better upper bounds: PSPACE for the case of a
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Horn and Sangnier Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary PSPACE
Absence of a leader EXPSPACE NP

This paper Asymmetric rendez-vous Symmetric rendez-vous
Presence of a leader Decidable, non-elementary NP-complete
Absence of a leader P-complete NC

Table 1. Summary of the results by Horn and Sangnier and the results of this paper.

leader, and NP in the leaderless case. These results are summarized at the top
of Table 1.

In [17] the question of improving the upper bounds or finding matching lower
bounds is left open. In this paper we close it with a surprising answer: All
elementary upper bounds of [17] can be dramatically improved. In particular,
our main result shows that the EXPSPACE bound for the leaderless case can be
brought down to P. Further, the PSPACE and NP bounds of the symmetric case
can be lowered to NP and NC, respectively, as shown at the bottom of Table 1.
We also obtain matching lower bounds. Finally, we provide almost tight upper
bounds for the size of the cut-off B; more precisely, we show that if B exists,

then B ∈ 2n
O(1)

for a protocol of size n.

Our results follow from two lemmas, called the Scaling and Insertion Lemmas,
that connect the continuous semantics for Petri nets to their standard semantics.
In the continuous semantics of Petri nets transition firings can be scaled by a
positive rational factor; for example, a transition can fire with factor 1/3, taking
“1/3 of a token” from its input places. The continuous semantics is a relaxation
of the standard one, and its associated reachability problem is much simpler
(polynomial instead of non-elementary [14,6,5]). The Scaling Lemma1 states that
given two markings M,M ′ of a Petri net, if M ′ is reachable from M in the
continuous semantics, then nM ′ is reachable from nM in the standard semantics

for some n ∈ 2m
O(1)

, where m is the total size of the net and the markings. The
Insertion Lemma states that, given four markings M,M ′, L, L′, if M ′ is reachable
from M in the continuous semantics and the marking equation L′ = L+Ax has
a solution x ∈ ZT (observe that x can have negative components), then nM ′+L′

is reachable from nM + L in the standard semantics for some n ∈ 2m
O(1)

. We
think that these lemmas can be of independent interest.

The paper is organized as follows. Section 2 contains preliminaries; in par-
ticular, it defines the cut-off problem for rendez-vous networks and reduces it to
the cut-off problem for Petri nets. Section 3 gives a polynomial time algorithm
for the leaderless cut-off problem for acyclic Petri nets. Section 4 introduces
the Scaling and Insertion Lemmas, and Section 5 presents the novel polynomial

1 Heavily based on previous results by Fraca and Haddad [14].
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time algorithm for the cut-off problem. Sections 6 and 7 present the results for
symmetric networks, for the cases with and without leaders, respectively.

Due to lack of space, full proofs of some of the lemmas can be found in the
appendix.

2 Preliminaries

Multisets Let E be a finite set. For a semi-ring S, a vector from E to S is a
function v : E → S. The set of all vectors from E to S will be denoted by SE . In
this paper, the semi-rings we will be concerned with are the natural numbers N,
the integers Z and the non-negative rationals Q≥0 (under the usual addition and
multiplication operators). The support of a vector v is the set JvK := {e : v(e) 6=
0} and its size is the number ‖v‖ =

∑
e∈JvK abs(v(e)) where abs(x) denotes the

absolute value of x. Vectors from E to N are also called discrete multisets (or
just multisets) and vectors from E to Q≥0 are called continuous multisets.

Given a multiset M and a number α we let α ·M be the multiset given by
(α ·M)(e) = M(e) · α for all e ∈ E. Given two multisets M and M ′ we say that
M ≤ M ′ if M(e) ≤ M ′(e) for all e ∈ E and we let M + M ′ be the multiset
given by (M + M ′)(e) = M(e) + M ′(e) and if M ′ ≤ M , we let M −M ′ be the
multiset given by (M −M ′)(e) = M(e)−M ′(e). The empty multiset is denoted
by 0. We sometimes denote multisets using a set-like notation, e.g. Ha, 2 · b, cI
denotes the multiset given by M(a) = 1,M(b) = 2,M(c) = 1 and M(e) = 0 for
all e /∈ {a, b, c}.

Given an I × J matrix A with I and J sets of indices, I ′ ⊆ I and J ′ ⊆ J ,
we let AI′×J′ denote the restriction of M to rows indexed by I ′ and columns
indexed by J ′.

Rendez-vous protocols and the cut-off problem. Let Σ be a fixed finite
set which we will call the communication alphabet and we let RV (Σ) = {!a, ?a :
a ∈ Σ}. The symbol !a denotes that the message a is sent and ?a denotes that
the message a is received.

Definition 1. A rendez-vous protocol P is a tuple (Q,Σ, init ,fin, R) where Q
is a finite set of states, Σ is the communication alphabet, init ,fin ∈ Q are the
initial and final states respectively and R ⊆ Q×RV (Σ)×Q is the set of rules.

The size |P| of a protocol is defined as the number of bits needed to encode
P in {0, 1}∗ using some standard encoding. A configuration C of P is a multiset
of states, where C(q) should be interpreted as the number of agents in state
q. We use C(P) to denote the set of all configurations of P. An initial (final)
configuration C is a configuration such that C(q) = 0 if q 6= init (resp. C(q) = 0
if q 6= fin). We use Cninit (Cnfin) to denote the initial (resp. final) configuration
such that Cninit (init) = n (resp. Cnfin(fin) = n).

The operational semantics of a rendez-vous protocol P is given by means
of a transition system between the configurations of P. We say that there is
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a transition between C and C ′, denoted by C ⇒ C ′ iff there exists a ∈ Σ,
p, q, p′, q′ ∈ Q such that (p, !a, p′), (q, ?a, q′) ∈ R, C ≥ Hp, qI and C ′ = C −
Hp, qI + Hp′, q′I. As usual,

∗
=⇒ denotes the reflexive and transitive closure of ⇒.

The cut-off problem for rendez-vous protocols, as defined in [17], is:

Given: A rendez-vous protocol P
Decide: Is there B ∈ N such that Cninit

∗
=⇒ Cnfin for every n ≥ B ?

If such a B exists then we say that P admits a cut-off and that B is a cut-off
for P.

Petri nets. Rendez-vous protocols can be seen as a special class of Petri nets.

Definition 2. A Petri net is a tuple N = (P, T,Pre,Post) where P is a finite
set of places, T is a finite set of transitions, Pre and Post are matrices whose
rows and columns are indexed by P and T respectively and whose entries belong
to N. The incidence matrix A of N is defined to be the P × T matrix given by
A = Post −Pre. Further by the weight of N , we mean the largest absolute value
appearing in the matrices Pre and Post.

The size |N | of N is defined as the number of bits needed to encode N in
{0, 1}∗ using some suitable encoding. For a transition t ∈ T we let

•
t = {p :

Pre[p, t] > 0} and t
•

= {p : Post [p, t] > 0}. We extend this notation to set of
transitions in the obvious way. Given a Petri net N , we can associate with it a
graph where the vertices are P ∪ T and the edges are {(p, t) : p ∈ •t} ∪ {(t, p) :
p ∈ t•}. A Petri net N is called acyclic if its associated graph is acyclic.

A marking of a Petri net is a multiset M ∈ NP , which intuitively denotes
the number of tokens that are present in every place of the net. For t ∈ T and
markings M and M ′, we say that M ′ is reached from M by firing t, denoted

M
t−→M ′, if for every place p, M(p) ≥ Pre[p, t] and M ′(p) = M(p) +A[p, t].
A firing sequence is any sequence of transitions σ = t1, t2, . . . , tk ∈ T ∗. The

support of σ, denoted by JσK, is the set of all transitions which appear in σ. We
let σσ′ denote the concatenation of two sequences σ, σ′.

Given a firing sequence σ = t1, t2, . . . , tk ∈ T ∗, we let M
σ−→ M ′ denote that

there exist M1, . . . ,Mk−1 such that M
t1−→M1

t2−→M2 . . .Mk−1
tk−→M ′. Further,

M → M ′ denotes that there exists t ∈ T such that M
t−→ M ′, and M

∗−→ M ′

denotes that there exists σ ∈ T ∗ such that M
σ−→M ′.

Marking equation of a Petri net system. In the following, a Petri net system is
a triple (N ,M,M ′) where N is a Petri net and M 6= M ′ are markings. The
marking equation for (N ,M,M ′) is the equation

M ′ = M +Av

over the variables v. It is well known that M
σ−→ M ′ implies M ′ = M + A−→σ ,

where −→σ ∈ NT is the the Parikh image of σ, defined as the vector whose com-
ponent −→σ [t] for transition t is equal to the number of times t appears in σ.

Therefore, if M
σ−→M ′ then −→σ is a nonnegative integer solution of the marking

equation. The converse does not hold.
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From rendez-vous protocols to Petri nets. Let P = (Q,Σ, init ,fin, R) be
a rendez-vous protocol. Create a Petri net NP = (P, T,Pre,Post) as follows.
The set of places is Q. For each letter a ∈ Σ and for each pair of rules r =
(q, !a, s), r′ = (q′, ?a, s′) ∈ R, add a transition tr,r′ to NP and set

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post [p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post [s, t] = 2, otherwise Post [s, t] = Post [s′, t] = 1.

It is clear that any configuration of a protocol P is also a marking of NP ,
and vice versa. Further, the following proposition is obvious.

Proposition 1. For any two configurations C and C ′ we have that C
∗

=⇒ C ′

over the protocol P iff C
∗−→ C ′ over the Petri net NP .

Consequently, the cut-off problem for Petri nets, defined by

Given : A Petri net system (N ,M,M ′)

Decide: Is there B ∈ N such that n ·M ∗−→ n ·M ′ for every n ≥ B ?

generalizes the problem for rendez-vous protocols.

3 The cut-off problem for acyclic Petri nets

We show that the cut-off problem for acyclic Petri nets can be solved in polyno-
mial time. The reason for considering this special case first is that it illustrates
one of the main ideas of the general case in a very pure form.

Let us fix a Petri net system (N ,M,M ′) for the rest of this section, where
N = (P, T, Pre, Post) is acyclic and A is its incidence matrix. It is well-known
that in acyclic Petri nets the reachability relation is characterized by the marking
equation (see e.g. [24]):

Proposition 2 ([24]). Let (N ,M,M ′) be an acyclic Petri net system. For

every sequence σ ∈ T ∗, we have M
σ−→ M ′ iff −→σ is a solution of the marking

equation. Consequently, M
∗−→ M ′ iff the marking equation has a nonnegative

integer solution.

This proposition shows that the reachability problem for acyclic Petri nets
reduces to the feasibilty problem (i.e., existence of solutions) of systems of linear
diophantine equations over the nonnegative integers. So the reachability problem
for acyclic Petri nets is in NP, and in fact both the reachability and the feasibility
problems are NP-complete [13].

There are two ways to relax the conditions on the solution so as to make the
feasibility problem polynomial. Feasibility over the nonnegative rationals and
feasibility over all integers are both in P. The first is due to the polynomiality
of linear programming. For the second, feasibility can be decided in polynomial
time after computing the Smith or Hermite normal forms (see e.g. [29]), which
can themselves be computed in polynomial time [19]. We show that the cut-off
problem can be reduced to these two relaxed problems.
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3.1 Characterizing acyclic systems with cut-offs

Horn and Sangnier proved in [17] a very useful charaterization of the rendez-
vous protocols with a cut-off: A rendez-vous protocol P admits a cut-off iff there
exists n ∈ N such that Cninit

∗
=⇒ Cnfin and Cn+1

init
∗

=⇒ Cn+1
fin . The proof immediately

generalizes to the case of Petri nets:

Lemma 1 ([17]). A Petri net system (N ,M,M ′) (acyclic or not) admits a cut-

off iff there exists n ∈ N such that n ·M ∗−→ n ·M ′ and (n+1) ·M ∗−→ (n+1) ·M ′.
Moreover if n ·M ∗−→ n ·M ′ and (n+ 1) ·M ∗−→ (n+ 1) ·M ′, then n2 is a cut-off
for the system.

Using this lemma, we characterize those acyclic Petri net systems which
admit a cut-off.

Theorem 1. An acyclic Petri net system (N ,M,M ′) admits a cut-off iff the
marking equation has solutions x ∈ QT≥0 and y ∈ ZT such that JyK ⊆ JxK.

Proof. (⇒): Suppose (N ,M,M ′) admits a cut-off. Hence there exists b ∈ N
such that for all n ≥ b we have nM

∗−→ nM ′. Let bM
σ′−→ bM ′ and (b+ 1)M

τ ′−→
(b+1)M ′. Then, notice that (2b+1)M

σ′τ ′−−−→ (2b+1)M ′ and (2b+2)M
τ ′τ ′−−→ (2b+

2)M ′. Hence, if we let n = 2b+ 1, σ = σ′τ ′ and τ = τ ′τ ′ we have, nM
σ−→ nM ′,

(n+ 1)M
τ−→ (n+ 1)M ′ and JτK ⊆ JσK. By Proposition 2, there exist x′,y′ ∈ NT

such that Jy′K ⊆ Jx′K, nM ′ = nM + Ax′ and (n + 1)M ′ = (n + 1)M + Ay′.
Letting x = x′/n and y = y′ − x′, we get our required vectors.

(⇐): Suppose x ∈ QT≥0 and y ∈ ZT are solutions of the marking equation such
that JyK ⊆ JxK. Let µ be the least common multiple of the denominators of
the components of x, and let α be the largest absolute value of the numbers in
the vector y. By definition of µ we have α(µx) ∈ NT . Also, since JyK ⊆ JxK it
follows by definition of α that α(µx) + y ≥ 0 and hence α(µx) + y ∈ NT . Since
M ′ = M +Ax and M ′ = M +Ay we get

αµM ′ = αµM +A(αµx) and (αµ+ 1)M ′ = (αµ+ 1)M +A(αµx + y)

Taking αµ = n, by Proposition 2 we get that nM
∗−→ nM ′ and (n + 1)M

∗−→
(n+ 1)M ′. By Lemma 1, (N ,M,M ′) admits a cut-off.

Intuitively, the existence of the rational solution x ∈ QT≥0 guarantees nM
∗−→

nM ′ for infinitely many n, and the existence of the integer solution y ∈ ZT
guarantees that for one of those n we have (n+ 1)M

∗−→ (n+ 1)M ′ as well.

Example 1. The net system given by the net on Figure 1 along with the markings
M = HiI and M ′ = HfI admits a cut-off. The conditions of the theorem are
satisfied by x = ( 1

5 ,
1
5 ,

1
5 ,

1
5 ) and y = (−1, 1, 1, 1).
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t2

t1

t3 t4

i f

2 2

2 2

Fig. 1. A net with cut-off 2.

3.2 Polynomial time algorithm

We derive a polynomial time algorithm for the cut-off problem from the char-
acterization of Theorem 1. The first step is the following lemma. A very similar
lemma is proved in [14], but since the proof is short we give it for the sake of
completeness:

Lemma 2. If the marking equation is feasible over Q≥0, then it has a solution
with maximum support. Moreover, such a solution can be found in polynomial
time.

Proof. If y, z ∈ QT≥0 are solutions of the marking equation, then we have M ′ =
M + A((y + z)/2) and JyK ∪ JzK ⊆ J(y + z)/2K. Hence if the marking equation
if feasible over Q≥0, then it has a solution with maximum support.

To find such a solution in polynomial time we proceed as follows. For every
transition t we solve the linear program M ′ = M +Av,v ≥ 0,v(t) > 0. (Recall
that solving linear programs over the rationals can be done in polynomial time).
Let {t1, . . . , tn} be the set of transitions whose associated linear programs are
feasible over QT≥0, and let {u1, . . . ,un} be solutions to these programs. Then

1/n ·
∑n
i=1 ui is a solution of the marking equation with maximum support.

We now have all the ingredients to give a polynomial time algorithm.

Theorem 2. The cut-off problem for acyclic net systems can be solved in poly-
nomial time.

Proof. First, we check that the marking equation has a solution over the non-
negative rationals. If such a solution does not exist, by Theorem 1 the given net
system does not admit a cut-off.

Suppose such a solution exists. By Lemma 2 we can find a non-negative
rational solution x with maximum support in polynomial time. Let U contain
all the transitions t such that xt = 0. We now check in polynomial time if the
marking equation has a solution y over ZT such that yt = 0 for every t ∈ U . By
Theorem 1 such a solution exists iff the net system admits a cut-off.
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The rendez-vous protocol given in Figure 2, which was stated in [17], is an
example of a protocol where the smallest cut-off is exponential in the size of
the protocol. In the next sections, we will actually prove that if a net system N
(acyclic or not) admits a cut-off, then there is one with a polynomial number of
bits in |N |.

init q1 q2 q3 . . . qn fin
!1 !2 !3 !n !a

!a

?1

?2

?3

?n
?a

Fig. 2. Example of a protocol with an exponential cut-off

4 The Scaling and Insertion lemmas

Similar to the case of acyclic net systems, we would like to provide a character-
ization of net systems admitting a cut-off and then use this characterization to
derive a polynomial time algorithm. Unfortunately, in general net systems there
is no characterization of reachability akin to Proposition 2 for acyclic systems.
To this end, we prove two intermediate lemmas to help us come up with a char-
acterization for cut-off admissible net systems in the general case. We believe
that these two lemmas could be of independent interest in their own right. Fur-
ther, the proofs of both lemmas are provided so that it will enable us later on
to derive a bound on the cut-off for net systems.

4.1 The Scaling Lemma

The Scaling Lemma shows that, given a Petri net system (N ,M,M ′), whether

nM
∗−→ nM ′ holds for some n ≥ 1 can be decided in polynomial time; more-

over, if nM
∗−→ nM ′ holds for some n, then it holds for some n with at most

(|N |(log ‖M‖ + log ‖M ′‖))O(1) bits. The name of the lemma is due to the fact
that the firing sequence leading from nM to nM ′ is obtained by scaling up a
continuous firing sequence from M to M ′; the existence of such a continuous
sequence can be decided in polynomial time [14].

In the rest of the section we first recall continuous Petri nets and the chara-
terization of [14], and then present the Scaling Lemma2.

2 The lemma is implicitly proved in [14], but the bound on the size of n is hidden in
the details of the proof, and we make it explicit.
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Reachability in continuous Petri nets. Petri nets can be given a continuous
semantics (see e.g. [1,30,14]), in which markings are continuous multisets; we call
them continuous markings. A continuous marking M enables a transition t with
factor λ ∈ Q≥0 if M(p) ≥ λ · Pre[p, t] for every place p; we also say that M
enables λt. If M enables λt, then λt can fire or occur, leading to a new marking
M ′ given by M ′(p) = M(p) + λ · A[p, t] for every p ∈ P . We denote this by

M
λt−→Q M ′, and say that M ′ is reached from M by firing λt. A continuous firing

sequence is any sequence of transitions σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T )∗.

We let M
σ−→Q M ′ denote that there exist continuous markings M1, . . . ,Mk−1

such that M
λ1t1−−−→Q M1

λ2t2−−−→Q M2 · · ·Mk−1
λktk−−−→Q M ′. Further, M

∗−→Q M ′ denotes

that M
σ−→Q M ′ holds for some continuous firing sequence σ.

The Parikh image of σ = λ1t1, λ2t2, . . . , λktk ∈ (Q≥0 × T )∗ is the vector
−→σ ∈ QT≥0 where −→σ [t] =

∑k
i=1 δi,tλi, where δi,t = 1 if ti = t and 0 otherwise.

The support of σ is the support of its Parikh image −→σ . If M
σ−→Q M ′ then

−→σ is a solution of the marking equation over QT≥0, but the converse does not
hold. In [14], Fraca and Haddad strengthen this necessary condition to make
it also sufficient, and use the resulting characterization to derive a polynomial
algorithm.

Theorem 3 ([14]). Let (N ,M,M ′) be a Petri net system.

– M
σ−→Q M ′ iff −→σ is a solution of the marking equation over QT≥0, and there

exist continuous firing sequences τ , τ ′ and continuous markings L and L′

such that JτK = JσK = Jτ ′K, M
τ−→Q L, and L′

τ ′−→Q M ′.

– It can be decided in polynomial time if M
∗−→Q M ′ holds.

Scaling. It follows easily from the definitions that nM
∗−→ nM ′ holds for some

n ≥ 1 iff M
∗−→Q M ′. Indeed, if M

σ−→Q M ′ for some σ = λ1t1, λ2t2, . . . , λktk ∈
(Q≥0 × T )∗, then we can scale this continuous firing sequence to a discrete se-

quence nM
nσ−−→Q nM ′ where n is the smallest number such that nλ1, . . . , nλk ∈ N,

and nσ = tnλ1
1 tnλ2

2 . . . tnλk

k . So Theorem 3 immediately implies that the existence

of n ≥ 1 such that nM
∗−→ nM ′ can be decided in polynomial time. The following

lemma also gives a bound on n.

Lemma 3. Let (N ,M,M ′) be a Petri net system with weight w such that M
σ−→Q

M ′ for some continuous firing sequence σ ∈ (Q≥0×T )∗. Let m be the number of
transitions in JσK and let ` be ‖−→σ ‖. Let k be the smallest natural number such
that k−→σ ∈ NT . Then, there exists a firing sequence τ ∈ T ∗ such that JτK = JσK
and (

16w(w + 1)2mk` ·M
) τ−→

(
16w(w + 1)2mk` ·M ′

)
Lemma 4. (Scaling Lemma). Let (N ,M,M ′) be a Petri net system such

that M
σ−→Q M ′. There exists a number n with a polynomial number of bits in

|N |(log ‖M‖+ log ‖M ′‖) such that nM
τ−→ nM ′ for some τ with JτK = JσK.
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4.2 The Insertion Lemma

In the acyclic case, the existence of a cut-off is characterized by the existence of
solutions to the marking equation QT≥0 and ZT . Intuitively, in the general case

we replace the existence of solutions over QT≥0 by the conditions of the Scaling

Lemma, and the existence of solutions over ZT by the Insertion Lemma:

Lemma 5 (Insertion Lemma). Let M,M ′, L, L′ be markings of N satisfying

M
σ−→ M ′ for some σ ∈ T ∗ and L′ = L + Ay for some y ∈ ZT such that

JyK ⊆ JσK. Then µM + L
∗−→ µM ′ + L′ for µ = ‖y‖(‖−→σ ‖nw + nw + 1) , where

w is the weight of N , and n is the number of places in
•JσK.

The idea of the proof is a follows: In a first stage, we asynchronously execute
multiple “copies” of the firing sequence σ from multiple “copies” of the marking
M , until we reach a marking at which all places of

•JσK contain a sufficiently
large number of tokens. At this point we temporarily interrupt the executions
of the copies of σ to insert a firing sequence with Parikh mapping ‖y‖−→σ + y.
The net effect of this sequence is to transfer some copies of M to M ′, leaving
the other copies untouched, and exactly one copy of L to L′. In the third stage,
we resume the interrupted executions of the copies of σ, which completes the
transfer of the remaining copies of M to M ′ .

Proof. Let x be the Parikh image of σ, i.e., x = −→σ . Since M
σ−→ M ′, by the

marking equation we have M ′ = M +Ax

First stage: Let λx = ‖x‖, λy = ‖y‖ and µ = λy(λxnw + nw + 1). Let σ :=

r1, r2, . . . , rk and let M =: M0
r1−→ M1

r2−→ M2 . . .Mk−1
rk−→ Mk := M . Notice

that for each place p ∈ •JσK, there exists a marking Mip ∈ {M0, . . . ,Mk−1} such
that Mip(p) > 0.

Since each of the markings in {Mip}p∈•JσK can be obtained from M by firing
a (suitable) prefix of σ, it is easy to see that from the marking µM + L =
λyM +L+ (λxλynw +λynw)M we can reach the marking First := λyM +L+∑
p∈•JσK(λxλyw + λyw)Mip . This completes our first stage.

Second stage - Insert: Since JyK ⊆ JσK, if y(t) 6= 0 then x(t) 6= 0. Since
x(t) ≥ 0 for every transition, it now follows that (λyx + y)(t) ≥ 0 for every
transition t and (λyx + y)(t) > 0 precisely for those transitions in JσK.

Let ξ be any firing sequence such that
−→
ξ = λyx + y. Notice that for every

place p ∈ •JσK, First(p) ≥ λxλyw +λyw ≥ ‖(λyx+y)‖·w . By an easy induction

on ‖ξ‖, it follows that that First
ξ−→ Second for some marking Second. By the

marking equation, it follows that Second = λyM
′ + L′ +

∑
p∈•JσK(λxλyw +

λyw)Mip . This completes our second stage.

Third stage: Notice that for each place p ∈ •JσK, by construction of Mip , there
is a firing sequence which takes the marking Mip to the marking M ′. It then
follows that there is a firing sequence which takes the marking Second to the
marking λyM

′ + L′ +
∑
p∈•JσK(λxλyw + λyw)M ′ = µM ′ + L′. This completes

our third stage and also completes the desired firing sequence from µM + L to
µM ′ + L′.
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5 Polynomial time algorithm for the general case

Let (N ,M,M ′) be a net system with N = (P, T, Pre, Post), such that A is its
incidence matrix. As in Section 3, we first characterize the Petri net systems
that admit a cut-off, and then provide a polynomial time algorithm.

5.1 Characterizing systems with cut-offs

We generalize the characterization of Theorem 1 for acyclic Petri net systems to
general systems.

Theorem 4. A Petri net system (N ,M,M ′) admits a cut-off iff there exists

some rational firing sequence σ such that M
σ−→Q M ′ and the marking equation

has a solution y ∈ ZT such that JyK ⊆ JσK.

Proof. (⇒): Assume (N ,M,M ′) admits a cut-off. Hence there exists B ∈ N such

that for all n ≥ B we have nM
∗−→ nM ′. Similar to the proof of theorem 1, we

can show that there exist n ∈ N and firing sequences τ, τ ′ such that nM
τ−→ nM ′,

(n+ 1)M
τ ′−→ (n+ 1)M ′ and Jτ ′K ⊆ JτK.

Let τ = t1t2 · · · tk. Construct the rational firing sequence σ := t1/n t2/n · · ·
tk/n. From the fact that nM

τ−→ nM ′, we can easily conclude by induction on k

that M
σ−→Q M ′. Further, by the marking equation we have nM ′ = nM+A−→τ and

(n+1)M ′ = (n+1)M +A
−→
τ ′ . Let y =

−→
τ ′ −−→τ . Then y ∈ ZT and M ′ = M +Ay.

Further, since Jτ ′K ⊆ JτK = JσK, we have JyK ⊆ JσK.

(⇐): Assume there exists a rational firing sequence σ and a vector y ∈ ZT such

that JyK ⊆ JσK, M σ−→Q M ′ and M ′ = M+Ay. Let s = |N |(log ‖M‖+log ‖M ′‖).
It is well known that if a system of linear equations over the integers is feasible,
then there is a solution which can be described using a number of bits which is
polynomial in the size of the input (see e.g. [20]). Hence, we can assume that
‖y‖ can be described using sO(1) bits.

By Lemma 4 there exists n (which can be described using sO(1) bits) and a

firing sequence τ with JτK = JσK such that nM
τ−→ nM ′. Hence knM

∗−→ knM ′ is
also possible for any k ∈ N. By Lemma 5, there exists µ (which can once again

be described using sO(1) bits) such that µnM + M
∗−→ µnM ′ + M ′ is possible.

By Lemma 1 the system (N ,M,M ′) admits a cut-off with a polynomial number
of bits in s.

Notice that we have actually proved that if a net system admits a cut-off
then it admits a cut-off with a polynomial number of bits in its size. Since the
cut-off problem for a rendez-vous protocol P can be reduced to a cut-off problem
for the Petri net system (NP , HinitI, HfinI), it follows that,

Corollary 1. If the system (N ,M,M ′) admits a cut-off then it admits a cut-
off with a polynomial number of bits in |N |(log ‖M‖ + log ‖M ′‖). Hence, if a
rendez-vous protocol P admits a cut-off then it admits a cut-off with a polynomial
number of bits in |P|.
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5.2 Polynomial time algorithm

We use the characterization given in the previous section to provide a polynomial
time algorithm for the cut-off problem. The following lemma, which was proved
in [14] and whose proof is given in the appendix, enables us to find a firing
sequence between two markings with maximum support.

Lemma 6. [14] Among all the rational firing sequences σ such that M
σ−→Q

M ′, there is one with maximum support. Moreover, the support of such a firing
sequence can be found in polynomial time.

We now have all the ingredients to prove the existence of a polynomial time
algorithm.

Theorem 5. The cut-off problem for net systems can be solved in polynomial
time.

Proof. First, we check that there is a rational firing sequence σ with M
σ−→Q

M ′, which can be done in polynomial time by ([14], Proposition 27). If such a
sequence does not exist, by Theorem 4 the given net system does not admit a
cut-off.

Suppose such a sequence exists. By Lemma 6 we can find in polynomial time,
the maximum support S of all the firing sequences τ such that M

τ−→Q M ′. We

now check in polynomial time if the marking equation has a solution y over ZT
such that y(t) = 0 for every t /∈ S. By Theorem 4 such a solution exists iff the
net system admits a cut-off.

This immediately proves that the cut-off problem for rendez-vous protocols
is also in polynomial time. By an easy logspace reduction from the Circuit Value
Problem [21], we prove that

Lemma 7. The cut-off problem for rendez-vous protocols is P-hard.

Clearly, this also proves that the cut-off problem for Petri nets is P-hard.

6 Symmetric rendez-vous protocols

In [17] Horn and Sangnier introduce symmetric rendez-vous protocols, where
sending and receiving a message at each state has the same effect, and show
that the cut-off problem is in NP. We improve on their result and shown that it
is in NC.

Recall that NC is the set of problems in P that can be solved in polyloga-
rithmic parallel time, i.e., problems which can be solved by a uniform family of
circuits with polylogarithmic depth and polynomial number of gates. Two well-
known problems which lie in NC are graph reachability and feasibility of linear
equations over the finite field F2 of size 2 [27,23]. We proceed to formally define
symmetric protocols and state our results.
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Definition 3. A rendez-vous protocol P = (Q,Σ, init ,fin, R) is symmetric, iff
its set of rules is symmetric under swapping !a and ?a for each a ∈ Σ, i.e., for
each a ∈ Σ, we have (q, !a, q′) ∈ R iff (q, ?a, q′) ∈ R.

Horn and Sangnier show that, because of their symmetric nature, there is a
very easy characterization for cut-off admitting symmetric protocols.

Proposition 3. ([17], Lemma 18) A symmetric protocol P admits a cut-off iff

there exists an even number e and an odd number o such that Ceinit
∗−→ Cefin and

Coinit
∗−→ Cofin .

From a symmetric protocol P, we can derive a graph G(P) where the vertices
are the states and there is an edge between q and q′ iff there exists a ∈ Σ such
that (q, a, q′) ∈ R. The following proposition is immediate from the definition of
symmetric protocols:

Proposition 4. Let P be a symmetric protocol. There exists an even number
e such that Ceinit

∗−→ Cefin iff there is a path from init to fin in the graph G(P).

Proof. The left to right implication is obvious. For the other side, suppose there
is a path init , q1, q2, . . . , qm−1,fin in the graph G(P). Then notice that H2·initI→
H2 · q1I→ H2 · q2I · · · → H2 · qm−1I→ H2 · qfI is a valid run of the protocol.

Since graph reachability is in NC , this takes care of the “even” case from
Proposition 3. Hence, we only need to take care of the “odd” case from Propo-
sition 3.

Fix a symmetric protocol P for the rest of the section. As a first step, for
each state q ∈ Q, we compute if there is a path from init to q and if there is
a path from q to fin in the graph G(P). Since graph reachability is in NC this
computation can be carried out in NC by parallely running graph reachability
for each q ∈ Q. If such paths exist for a state q then we call q a good state,
and otherwise a bad state. The following proposition easily follows from the
symmetric nature of P:

Proposition 5. If q ∈ Q is a good state, then H2 · initI ∗−→ H2 · qI and H2 · qI ∗−→
H2 · finI.

Similar to the general case of rendez-vous protocols, given a symmetric pro-
tocol P we can construct a Petri net NP whose places are the states of P and
which faithfully represents the reachability relation of configurations of P. Ob-
serve that this construction can be carried out in parallel over all the states in
Q and over all pairs of rules in R. Let N = (P, T, Pre, Post) be the Petri net
that we construct out of the symmetric protocol P and let A be its incidence
matrix. We now write the marking equation for N as follows: We introduce a
variable v[t] for each transition t ∈ T and we construct an equation system Eq
enforcing the following three conditions:

– v[t] = 0 for every t ∈ T such that
•
t ∪ t• contains a bad state.

By definition of a bad state, such transitions will never be fired on any run
from an initial to a final configuration and so our requirement is safe.



56 A. R. Balasubramanian et al.

–
∑
t∈T A[q, t] · v[t] = 0 for each q /∈ {init ,fin}.

Notice that the net-effect of any run from an initial to a final configuration
on any state not in {init ,fin} is 0 and hence this condition is valid as well.

–
∑
t∈T A[init , t] · v[t] = −1 and

∑
t∈T A[fin, t] · v[t] = 1.

It is clear that the construction of Eq can be carried out in parallel over each
q ∈ Q and each t ∈ T . Finally, we solve Eq over arithmetic modulo 2, i.e., we
solve Eq over the field F2 which as mentioned before can be done in NC. We
have:

Lemma 8. There exists an odd number o such that Coinit
∗−→ Cofin iff the equation

system Eq has a solution over F2.

Proof. (Sketch.) The left to right implication is true because of taking modulo 2
on both sides of the marking equation. For the other side, we use an idea similar
to Lemma 5. Let x be a solution to Eq over F2. Using Proposition 5 we first
populate all the good states of Q with enough processes such that all the good
states except init have an even number of processes. Then, we fire exactly once,
all the transitions t such that x[t] = 1. Since x satisfies Eq, we can now argue
that in the resulting configuration, the number of processes at each bad state is
0 and the number of processes in each good state except fin is even. Hence, we
can once again use Proposition 5 to conclude that we can move all the processes
which are not at fin to the final state fin.

Theorem 6. The problem of deciding whether a symmetric protocol admits a
cut-off is in NC.

Proof. By Proposition 3 it suffices to find an even number e and an odd number
o such that Ceinit

∗−→ Cefin and Coinit
∗−→ Cofin . By Proposition 4 the former can be

done in NC. By Lemma 8 and by the fact that the equation system Eq can be
constructed and solved in NC, it follows that the latter can also be done in NC.

7 Symmetric protocols with leaders

In this section, we extend symmetric rendez-vous protocols by adding a special
process called leader. We state the cut-off problem for such protocols and prove
that it is NP-complete.

Definition 4. A symmetric leader protocol is a pair of symmetric protocols P =
(PL,PF ) where PL = (QL, Σ, initL,finL, RL) is the leader protocol and PF =
(QF , Σ, initF ,finF , RF ) is the follower protocol where QL ∩QF = ∅.

A configuration of a symmetric leader protocol P is a multiset over QL ∪QF
such that

∑
q∈QL C(q) = 1. This corresponds to the intuition that exactly one

process can execute the leader protocol. For each n ∈ N, let Cninit (resp. Cnfin)

denote the initial (resp. final) configuration of P given by Cninit (initL) = 1 (resp.
Cnfin(finL) = 1) and Cninit (initF ) = n (resp. Cnfin(finF ) = n). We say that C =⇒ C ′
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if there exists (p, !a, p′), (q, ?a, q′) ∈ RL ∪ RF , C ≥ Hp, qI and C ′ = C − Hp, qI +
Hp′, q′I. Since we allow at most one process to execute the leader protocol, given
a configuration C, we can let lead(C) denote the unique state q ∈ QL such that
C(q) > 0.

Definition 5. The cut-off problem for symmetric leader protocols is the follow-
ing.

Input: A symmetric leader protocol P = (PL,PF ).

Output: Is there B ∈ N such that for all n ≥ B, Cninit
∗

=⇒ Cnfin .

We know the following fact regarding symmetric leader protocols.

Proposition 6. ([17], Lemma 18) A symmetric leader protocol admits a cut-off

iff there exists an even number e and an odd number o such that Ceinit
∗

=⇒ Cefin

and Coinit
∗

=⇒ Cofin .

The main theorem of this section is

Theorem 7. The cut-off problem for symmetric leader protocols is NP-complete

7.1 A non-deterministic polynomial time algorithm

Let P = (PL,PF ) be a symmetric leader protocol with PL = (QL, Σ, initL,finL,
RL) and PF = (QF , Σ, initF ,finF , RF ). Similar to the previous section, from
PF we can construct a graph G(PF ) where the vertices are given by the states
QF and the edges are given by the rules in RF . In G(PF ), we can clearly remove
all vertices which are not reachable from the state initF and which do not have
a path to finF . In the sequel, we will assume that such vertices do not exist in
G(PF ).

Similar to the general case, we will construct a Petri net NP from the given
symmetric leader protocol P. However, the construction is made slightly com-
plicated due to the presence of a leader.

From P = (PL,PF ), we construct a Petri net N = (P, T, Pre, Post) as
follows: Let P be QL ∪ QF . For each a ∈ Σ and r = (q, !a, s), r′ = (q′, ?a, s′) ∈
RL∪RF such that at most one of r and r′ belongs to RL, we will have a transition
tr,r′ ∈ T in N such that

– Pre[p, t] = 0 for every p /∈ {q, q′}, Post[p, t] = 0 for every p /∈ {s, s′}
– If q = q′ then Pre[q, t] = −2, otherwise Pre[q, t] = Pre[q′, t] = −1
– If s = s′ then Post[s, t] = 2, otherwise Post[s, t] = Post[s′, t] = 1.

Transitions tr,r′ in which exactly one of r, r′ is in RL will be called leader
transitions and transitions in which both of r, r′ are in RF will be called follower-
only transitions. Notice that if t is a leader transition, then there is a unique place
p ∈ •t ∩ QL and a unique place p ∈ t• ∩ QL. These places will be denoted by
t.from and t.to respectively.

As usual, we let A denote the incidence matrix of the constructed net N .
The following proposition is obvious from the construction of the net N
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Proposition 7. For two configurations C and C ′, we have that C
∗

=⇒ C ′ in the
protocol P iff C

∗−→ C in the net N .

Because P is symmetric we have the following fact, which is easy to verify.

Proposition 8. If q ∈ QF , then H2 · initF I ∗−→ H2 · qI ∗−→ H2 · finF I

For any vector x ∈ NT , we define lead(x) to be the set of all leader transitions
such that x[t] > 0. The graph of the vector x, denoted by G(x) is defined as
follows: The set of vertices is the set {t.from : t ∈ lead(x)}∪{t.to : t ∈ lead(x)}.
The set of edges is the set {(t.from, t.to) : t ∈ lead(x)}. Further, for any two
vectors x,y ∈ NT and a transition t ∈ T , we say that x = y[t--] iff x[t] = y[t]−1
and x[t′] = y[t′] for all t′ 6= t.

Definition 6. Let C be a configuration and let x ∈ NT . We say that the pair
(C,x) is compatible if C + Ax ≥ 0 and every vertex in G(x) is reachable from
lead(C).

The following lemma states that as long as there are enough followers in
every state, it is possible for the leader to come up with a firing sequence from
a compatible pair.

Lemma 9. Suppose (C,x) is a compatible pair such that C(q) ≥ 2‖x‖ for
every q ∈ QF . Then there is a configuration D and a firing sequence ξ such that

C
ξ−→ D and

−→
ξ = x.

Proof. (Sketch.) We prove by induction on ‖x‖. If x[t] > 0 for some follower-only

transition, then it is easy to verify that if we let C ′ be such that C
t−→ C ′ and x′

be x[t--], then (C ′,x′) is compatible and C(q) ≥ 2‖x′‖ for every q ∈ QF .

Suppose x[t] > 0 for some leader transition. Let p = lead(C). If p belongs
to some cycle S = p, r1, p1, r2, p2, . . . , pk, rk+1, p in the graph G(x), then we let

C
r1−→ C ′ and x′ = x[t--]. It is easy to verify that C ′ +Ax′ ≥ 0, C ′(q) ≥ 2‖x′‖

for every q ∈ QF and lead(C ′) = p1. Any path P in G(x) from p to some vertex
s either goes through p1 or we can use the cycle S to traverse from p1 to p first
and then use P to reach s. This gives a path from p1 to every vertex s in G(x′).

If p does not belong to any cycle in G(x), then using the fact that C+Ax ≥ 0,
we can show that there is exactly one out-going edge t from p in G(x). We then

let C
t−→ C ′ and x′ = x[t--]. Since any path in G(x) from p has to necessarily

use this edge t, it follows that in G(x′) there is a path from t.to = lead(C ′) to
every vertex.

Lemma 10. Let par ∈ {0, 1}. There exists k ∈ N such that Ckinit
∗−→ Ckfin and

k ≡ par (mod 2) iff there exists n ∈ N, x ∈ NT such that n ≡ par (mod 2),
(Cninit ,x) is compatible and Cnfin = Cninit +Ax.
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Proof. (Sketch.) The left to right implication is easy and follows from the mark-
ing equation along with induction on the number of leader transitions in the
run. For the other side, we use an idea similar to Lemma 5. Let (Cninit ,x) be the
given compatible pair. We first use Proposition 8 to populate all the states of
QF with enough processes such that all the states of QF except initF have an
even number of processes. Then we use Lemma 9 to construct a firing sequence

ξ which can be fired from Cninit and such that
−→
ξ = x. By means of the marking

equation, we then argue that in the resulting configuration, the leader is in the
final state, n followers are in the state finF and every other follower state has
an even number of followers. Once again, using Proposition 8 we can now move
all the processes which are not at finF to the final state finF .

Lemma 11. Given a symmetric leader protocol, checking whether a cut-off ex-
ists can be done in NP.

Proof. By Proposition 6 it suffices to find an even number e and an odd number
o such that Ceinit

∗−→ Cefin and Coinit
∗−→ Cofin . Suppose we want to check that there

exists 2k ∈ N such that C2k
init

∗−→ C2k
fin . We first non-deterministically guess a set

of leader transitions S = {t1, . . . , tk} and check that for each t ∈ S, we can reach
t.from and t.to from initL using only the transitions in S.

Once we have guessed all this, we write a polynomially sized integer linear
program as follows: We let v denote |T | variables, one for each transition in T
and we let n be another variable, with all these variables ranging over N. We then
enforce the following conditions: C2n

fin = C2n
init + Av and v[t] = 0 ⇐⇒ t /∈ S

and solve the resulting linear program, which we can do in non-deterministic
polynomial time [26]. If there exists a solution, then we accept. Otherwise, we
reject.

By Lemma 10 and by the definition of compatibility, it follows that at least
one of our guesses gets accepted iff there exists 2k ∈ N such that C2k

init
∗−→ C2k

fin .

Similarly we can check if exists 2l + 1 ∈ N such that C2l+1
init

∗−→ C2l+1
fin .

By a reduction from 3-SAT, we prove that

Lemma 12. The cut-off problem for symmetric leader protocols is NP-hard.
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