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Abstract. We describe the canonical weak distributive law §: SP —
PS of the powerset monad P over the S-left-semimodule monad S, for
a class of semirings S. We show that the composition of P with S by
means of such ¢ yields almost the monad of convex subsets previously in-
troduced by Jacobs: the only difference consists in the absence in Jacobs’s
monad of the empty convex set. We provide a handy characterisation of
the canonical weak lifting of P to EM(S) as well as an algebraic the-
ory for the resulting composed monad. Finally, we restrict the composed
monad to finitely generated convex subsets and we show that it is pre-
sented by an algebraic theory combining semimodules and semilattices
with bottom, which are the algebras for the finite powerset monad P;.
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1 Introduction

Monads play a fundamental role in different areas of computer science since they
embody notions of computations [32], like nondeterminism, side effects and ex-
ceptions. Consider for instance automata theory: deterministic automata can be
conveniently regarded as certain kind of coalgebras on Set [33], nondeterminis-
tic automata as the same kind of coalgebras but on EM(Py) [35], and weighted
automata on EM(S) [4]. Here, Py is the finite powerset monad, modelling nonde-
terministic computations, while S is the monad of semimodules over a semiring
S, modelling various sorts of quantitative aspects when varying the underlying
semiring S. It is worth mentioning two facts: first, rather than taking coalgebras
over EM(T), the category of algebras for the monad 7', one can also consider
coalgebras over KI(T'), the Kleisli category induced by T' [20]; second, these two
approaches based on monads have lead not only to a deeper understanding of the
subject, but also to effective proof techniques [6,7,14], algorithms [1,8,22,36,39]
and logics [19,21,27].

Since compositionality is often the key to master complex structures, com-
puter scientists devoted quite some efforts to compose monads [40] or the equiva-
lent notion of algebraic theories [24]. Indeed, the standard approach of composing
monads by means of distributive laws [3] turned out to be somehow unsatisfac-
tory. On the one hand, distributive laws do not exist in many relevant cases:
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see [28,41] for some no-go theorems; on the other hand, proving their existence
is error-prone: see [28| for a list of results that were mistakenly assuming the
existence of a distributive law of the powerset monad over itself.

Nevertheless, some sort of weakening of the notion of distributive law—e.g.,
distributive laws of functors over monads [26]-proved to be ubiquitous in com-
puter science: they are GSOS specifications [38], they are sound coinductive
up-to techniques [7] and complete abstract domains [5]. In this paper we will
exploit weak distributive laws in the sense of [15] that have been recently shown
successful in composing the monads for nondeterminism and probability [17].

The goal of this paper is to somehow combine the monads Py and S men-
tioned above. Our interest in S relies on the wide expressiveness provided by the
possibility of varying S: for instance by taking S to be the Boolean semiring,
one obtains the monad Py; by fixing S to be the field of reals, coalgebras over
EM(S) turn out be linear dynamical systems [34].

We proceed as follows. Rather than composing Py, we found it convenient to
compose the full, not necessarily finite, powerset monad P with S. In this way we
can reuse several results in [12] that provide necessary and sufficient conditions
on the semiring S for the existence of a canonical weak [15] distributive law
§: SP — PS. Our first contribution (Theorem 21) consists in showing that
such 0 has a convenient alternative characterisation, whenever the underlying
semiring is a positive semifield, a condition that is met, e.g., by the semirings of
Booleans and non-negative reals.

Such characterisation allows us to give a handy definition of the canoni-
cal weak lifting of P over EM(S) (Theorem 24) and to observe that such lift-
ing is almost the same as the monad C: EM(S) — EM(S) defined by Jacobs
in [25] (Remark 25): the only difference is the absence in C of the empty subset.
Such difference becomes crucial when considering the composed monads, named
CM: Set — Set in [25] and P.S: Set — Set in this paper: the latter maps a set
X into the set of convex subsets of S X, while the former additionally requires the
subsets to be non-empty. It turns out that while KI(CM) is not CPPQ-enriched,
a necessary condition for the coalgebraic framework in [20], KI(P.S) indeed is
(Theorem 30).

Composing monads by means of weak distributive laws is rewarding in many
respects: here we exploit the fact that algebras for the composed monad P.S
coincide with d-algebras, namely algebras for both P and S satisfying a certain
pentagonal law. One can extract from this law some distributivity axioms that,
together with the axioms for semimodules (algebras for the monad §) and those
for complete semilattices (algebras for the monad P), provide an algebraic theory
presenting the monad P.S (Theorem 32).

We conclude by coming back to the finite powerset monad Py. By replac-
ing, in the above theory, complete semilattices with semilattices with bottom
(algebras for the monad Py) one obtains a theory presenting the monad Py.S of
finitely generated convex subsets (Theorem 35), which is formally defined as a
restriction of the canonical P.S. The theory, displayed in Table 1, consists of the
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Table 1. The sets of axioms FEs, for semilattices (left), Frsam for S-semimodules
(right) and Eps for their distributivity (bottom).

(zUy)Uz=zU@ylUz2) || (z+y)+z=2+Ww+2) A+sp)-z=AXz+pu-z
rUy=yUx r+y=y+z Os-x=0
Ul =z r+0=z Ap)-z=Xx(p-x)
Uz =z Alz4+y)=A-z+ Ay
A-0=0
A-L =1 for X # 0s Ar(zUy)=A-z)U(N-y)
x+L1l=1 z+(yUz)=(z+y)U (z+2)

theory presenting the monad P; and the theory presenting the monad S with
four distributivity axioms.

To save space we had to omit most of the proofs of the results in this article:
the interested reader can find them in [9].

Notation. We assume the reader to be familiar with monads and their maps.
Given a monad (M,nM, M) on C, EM(M) and KI(M) denote, respectively, the
Eilenberg-Moore category and the Kleisli category of M. The latter is defined
as the category whose objects are the same as C and a morphism f: X — Y
in KI(M) is a morphism f: X — M(Y) in C. We write UM : EM(M) — C and
Upr: KI(M) — C for the canonical forgetful functors, and F™: C — EM(M),
Fyr: C — KI(M) for their respective left adjoints. Recall, in particular, that
FM(X) = (X,p}) and, for f: X — Y, FM(f) = M(f). Given n a natural
number, we denote by n the set {1,...,n}.

2 (Weak) Distributive laws

Given two monads S and T on a category C, is there a way to compose them
to form a new monad ST on C? This question was answered by Beck [3] and
his theory of distributive laws, which are natural transformations 6: T'S — ST
satisfying four axioms and that provide a canonical way to endow the composite
functor ST with a monad structure. We begin by recalling the classic definition.
In the following, let (T, 7™, ) and (S, n°, u¥) be two monads on a category C.

Definition 1. A distributive law of the monad S over the monad T is a natural
transformation 6: T'S — ST such that the following diagrams commute.

7SS 25, sTS 5% §ST 7S L% 78T L5 STT
o] per o
TS g ST TS g ST
(1)
T S

TS 9 ST TS 9 ST
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One important result of Beck’s theory is the bijective correspondence between
distributive laws, liftings to Eilenberg-Moore algebras and extensions to Kleisli
categories, in the following sense.

Definition 2. A lifting of the monad S to EM(T) is a monad (S, 3, ,ug) where

EM(T) —5—~ EM(T) ~ ~
FTT TFT COmmutes, UT’I’IS = ”’}SUT, UTMS — ,U/SUT.

C S C

An extension of the monad T to K1(S) is a monad (T, 07, ,uf) such that

c—r—c
Fsl lFS commutes, 0 FS Fsn®, pu FS Fsu™.

KI(S) —— KI(S)

Bohm [11] and Street [37] have studied various weaker notions of distributive
law; here we shall use the one that consists in dropping the axiom involving n”
in Definition 1, following the approach of Garner [15].

Definition 3. A weak distributive law of S over T is a natural transformation
§: TS — ST such that the diagrams in (1) regarding p°, p* and n° commute.

There are suitable weaker notions of liftings and extensions which also bijec-
tively correspond to weak distributive laws as proved in [11,15].

Definition 4. A weak lifting of S to EM(T) consists of a monad (S, n°, ,ug) on
EM(T) and two natural transformations

vrs —» syT — =, yTs

such that me = idUTS' and such that the following diagrams commute:

Urss —5, suyTs -5, §5uT . uT

UT/ASl luSUT v V \WSAUT (2)
Urs z suT Urs d SUT
SsUuT 2T, guTS§ 5, yTS§S . g .

uSUTl lUT;LS K ‘UT/ YAU (3)
SUT L UTs SUT L urs

A weak extension of T' to KI(S) is a functor T: KI(S) — KI(S) together with a
natural transformation uT: TT — T such that FsT = TFS and MTFS = FSMT.
Theorem 5 ([3,11,15]). There is a bijective correspondence between (weak)

distributive laws TS — ST, (weak) liftings of S to EM(T) and (weak) extensions
of T to KI(S).
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3 The Powerset and Semimodule Monads

The Monad P. Let us now consider, as S, the powerset monad (P,np,up),
where 7% (z) = {z} and pk(U) = Upey U Its algebras are precisely the com-
plete semilattices and we have that KI(P) is isomorphic to the category Rel of
sets and relations. Hence, giving a distributive law TP — PT is the same as
giving an extension of T" to Rel: for this to happen the notion of weak cartesian
functor and natural transformation is crucial.

Definition 6. A functorT: Set — Set is said to be weakly cartesian if and only
if it preserves weak pullbacks. A natural transformation p: F — G is said to be
weakly cartesian if and only if its naturality squares are weak pullbacks.

Kurz and Velebil [29] proved, using an original argument of Barr [2], that an
endofunctor 7" on Set has at most one extension to Rel and this happens precisely
when it is weakly cartesian; similarly a natural transformation ¢: F — G, with
F and G weakly cartesian, has at most one extension ¢: F — G, precisely when
it is weakly cartesian. The following result is therefore immediate.

Proposition 7 ([15, Corollary 16]). For any monad (T,n*, u*) on Set:

1. There exists a unique distributive law of P over T if and only if T, nT and
uT are weakly Cartesian.
2. There exists a unique weak distributive law of P over T if and only if T and

uT are weakly Cartesian.

The Monad 8. Recall that a semiring is a tuple (S, +, -, 0, 1) such that (S, +,0)
is a commutative monoid, (S,-,1) is a monoid, - distributes over + and 0 is an
annihilating element for -. In other words, a semiring is a ring where not every
element has an additive inverse. Natural numbers N with the usual operations
of addition and multiplication form a semiring. Similarly, integers, rationals and
reals form semirings. Also the Booleans Bool = {0, 1} with V and A acting as +
and -, respectively, form a semiring.

Every semiring S generates a semimodule monad S on Set as follows. Given a
set X, S(X) = {p: X — S| supp o finite}, where supp p = {z € X | p(z) # 0}.
For f: X =Y, define for all p € S(X)

SN =(ym X @)Y -8
zef~{y}

This makes S a functor. The unit 7% : X — S(X) is given by 1% (z) = A,, where
A, is the Dirac function centred in x, while the multiplication u$: S?(X) —
S(X) is defined for all ¥ € S?(X) as

@) = (= Y (@) @) X 8.

pEsupp ¥
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Table 2. Definition of some properties of a semiring S. Here a,b,c,d € S.

Positive [a+b=0 = a=0=0

Semifieldla #0 = Jz.a-z=x-a=1

Refinablela +b=c+d = 3z,y,z,t.x+y=a,z+t=bx+z=c,y+t=d
(A) |la+b=1= a=00rb=0

(B) |la-b=0 = a=0o0rb=0

(©) at+c=b+c = a=b

(D) |Va,b.3z.a+z=borb+z=a

(E) la+b=c-d = 3t: {(z,y) € S|z +y=d} — S such that

Z t(mvy)m:av Z t(xvy)y:b’ Z t($7y):C'

z+y=d z+y=d zty=d

An algebra for S is precisely a left-S-semimodule, namely a set X equipped with
a binary operation +, an element 0 and a unary operation A- for each A € 5,
satisfying the equations in Table 1. Indeed, if X carries a semimodule structure
then one can define a map a: SX — X as, for p € SX,

a(p) =) plz)-a (4)

zeX

where the above sum is finite because so is supp ¢. Vice versa, if (X,a) is an
S-algebra, then the corresponding left-semimodule structure on X is obtained
by defining for all A € S and z,y € X

r+'y=a(z— 1,y —1), 0% = a(e), Atz =alz— A). (5)

Above and in the remainder of the paper, we write the list (x1 > s1,..., 2, —
$y) for the only function ¢: X — S with support {z1,...,z,} mapping z; to s;
and we write the empty list ¢ for the function constant to 0. For instance, for
a=p5: SSX — SX, the left-semimodule structure is defined for all 1, s €
SX and x € X as

S

(p1+ @2)(2) = pr(@) + pal), O () =0,  (AH p1)(@) =X pu(a).

Proposition 7 tells us exactly when a (weak) distributive law of the form
TP — PT exists for an arbitrary monad T on Set. Take then T' = S: when are
the functor S and the natural transformations n° and uS weakly cartesian? The
answer has been given in [12] (see also [18]), where a complete characterisation in
purely algebraic properties for S is provided. In Table 2 we recall such properties.

Theorem 8 ([12]). Let S be a semiring.

1. The functor S is weakly cartesian if and only if S is positive and refinable.

2. n% is weakly cartesian if and only if S enjoys (A) in Table 2.

3. If S is weakly cartesian, then pS is weakly cartesian if and only if S enjoys
(B) and (E) in Table 2.
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Remark 9. In [12, Proposition 9.1] it is proved that if S enjoys (C) and (D), then
S is refinable; if S is a positive semifield, then it enjoys (B) and (E). In the next
Proposition we prove that if S is a positive semifield then it is also refinable,
hence S and p® are weakly cartesian.

Proposition 10. If S is a positive semifield, then it is refinable.

Proof. Let a, b, c and d in S be such that a +b = c+d. If a + b = 0, then take
r=1y=z=t=0, otherwise take

ac ad be . bd
- —_— = z = = .
crd YT cxd c+d’ c+d
Thenz4+y=a,z+t=bx+z=c,y+t=d. a

Ezxample 11. It is known that, for S = N, a distributive law §: SP — PS exists.
Indeed one can check that all conditions of Theorem 8 are satisfied, therefore we
can apply Proposition 7.1. In this case, the monad SX is naturally isomorphic
to the commutative monoid monad, which given a set X returns the collection
of all multisets of elements of X. The law § is well known (see e.g. [15,23]): given
a multiset (A41,...,A,) of subsets of X in SPX, where the A;’s need not be
distinct, it returns the set of multisets {(a1,...,an) | a; € A;}.

Convex Subsets of Left-semimodules. Theorem 8 together with Propo-
sition 7.1 tell us that whenever the element 1 of S can be decomposed as a
non-trivial sum there is no distributive law §: SP — PS. Semirings with this
property abound, for example Q, R, R* with the usual operations of sum an
multiplication, as well as Bool (since 1V 1 = 1). Such semirings are precisely
those for which the notion of conver subset of their left-semimodules is non-
trivial. For the existence of a weak distributive law, however, this condition on
1g is not required: convexity will indeed play a crucial role in the definition of
the weak distributive law.

Definition 12. Let S be a semiring, X an S-left-semimodule and A C X. The
convex closure of A is the set

A—{Xn:)\za,|nEN,al€A,zn:/\Z—1}gX

i=1 i=1
The set A is said to be convex if and only if A= A.
Recalling that the category of S-left-semimodules is isomorphic to EM(S),

we can use (4) to translate Definition 12 of convex subset of a semimodule into
the following notion of convex subset of a S-algebra a: SX — X.

Definition 13. Let S be a semiring, (X,a) € EM(S), A C X. The convex
closure of A in (X, a) is the set

A" = {a(w) | peSX, suppp C A Y o(x) = 1}¢

zeX
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A is said to be convex in (X,a) if and only if A = A", We denote by PeX the
set of convex subsets of X with respect to a.

Remark 1. Observe that () is convex, because [ (), since there is no p € SX
with empty support such that > ¢(z) = 1.

Ezxample 15. Suppose S is such that 7° is weakly cartesian (equivalently (A)
holds: x + y =1 = x =0 or y = 0), for example S = N, and let (X,a) €
EM(S). A ¢ € SX such that )y o(r) =1 and supp ¢ C A is a function that
assigns 1 to ezactly one element of A and 0 to all the other elements of X. These
functions are precisely all the A, for those elements x € A. Since a: SX — X
is a structure map for an S-algebra, it maps the function A, into x. Therefore
A" ={a(A,) |z € A} ={z |2 € A} = A. Thus all A€ PSX are convex.

FEzample 16. When S = Bool, we have that § is naturally isomorphic to Py, the
finite powerset monad, whose algebras are idempotent commutative monoids
or equivalently semilattices with a bottom element. So, for (X,a) € EM(S), a
¢ € 8X such that > .y ¢(x) = 1 and suppp C A is any finitely supported
function from X to Bool that assigns 1 to at least one element of A. Intuitively,
such a ¢ selects a non-empty finite subset of A, then a(y) takes the join of all
the selected elements. Thus, A" adds to A all the possible joins of non-empty
finite subsets of A: A is convex if and only if it is closed under binary joins.

4 The Weak Distributive Law 6: SP — PS

Weak extensions of S to KI(P) = Rel only consist of extensions of the functor
S and of the multiplication p®, for which necessary and sufficient conditions
are listed in Theorem 8. Hence for semirings S satisfying those criteria a weak
distributive law §: SP — PS does exist, and it is unique because there is only
one extension of the functor S to Rel.

Theorem 17. Let S be a positive, refinable semiring satisfying (B) and (E) in
Table 2. Then there exists a unique weak distributive law 0: SP — PS defined
for all sets X and ® € SPX as:

VAe PX.P(A)= > (A4 x) (a)}
(6)

dx(P) = {90 €SX | I e S(>x). Ve € X. p(x) = AX;ZA(A@) (b)

where Sx s the set {(A,z) e PX x X |z € A}.

The above §, which is obtained by following the standard recipe of Proposition 7,
is illustrated by the following example.

Ezample 18. Take S = R with the usual operations of sum and multiplication.
Consider X = {x,y,z,a,b}, A1 = {z,y}, A2 = {y,2} and A3 = {a,b}. Let
& € S(PX) be defined as

@Z(A1F—>5, AQF—>9, A3*—>13)
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and @(A) = 0 for all other sets A C X, so supp® = {A;, As, A3}. In order to
find an element ¢ € 0x(®), we can first take a ¢ € S(5x) satisfying condition
(a) in (6) and then compute the ¢ € SX using condition (b).

Among the ¢ € S(3x), consider for instance the following:

o (Al,ﬂj) — 2 (Ag,y) — 4 (Ag,(l) — 6
0= ((Al,y) =3 (Az,2) =5 (A3,0) =7 )

Since P(A1) = (A1, @) + (A1, y), D(A2) = (A2,y) + ¥(Az,2) and (A43) =
P(As,a) + 1p(As, b), we have that ¢ satisfies condition (a) in (6). Condition (b)
forces ¢ to be the following:

p=(x—2 y—3+4 25 a—6, b—T).

Remark 19. If S enjoys (A) in Table 2, then the transformation § given in (6)
is actually a distributive law, and for S = N we recover the well-known § of
Example 11. Example 18 can be repeated with S = N: then & is the multiset
where the set A; occurs five times, As nine times and As thirteen times. The
elements of dx (P) are all those multisets containing one element per copy of Ay,
As and Az in supp @. The ¢ provided indeed contains five elements of A; (two
copies of x and three of y), nine elements of Ay (four copies of y and five of z),
thirteen elements of As (six copies of a and seven of b).

As Example 18 shows, each element ¢ of dx (®P) is determined by a function
1 choosing for each set A € supp @ a finite number of elements z{',..., 27 in A
A

and s7',...,s2 in S in such a way that it 55t = @(A). The function ¢ maps

each xf to sf if the sets in supp @ are disjoint; if however there are xf and x,’f
such that xf = a:kB (like y in Example 18), then xf is mapped to s;‘ + skB.
Among those v’s, there are some special, minimal ones as it were, that choose
for each A in supp @ exactly one element of A, and assign to it &(A). The induced
¢ in 6x (@) can be described as 3~ 4, -1,y P(A) (equivalently S(u)(®)t) where
u: supp ® — X is a function selecting an element of A for each A € supp @ (that

is u(A) € A). We denote the set of such ¢’s by ¢(P).
(@) = {SW)(P) | u: suppP — X such that VA € supp P.u(A) € A} (7)

Ezxample 20. Take X, A; and Ay as in Example 18, but a different, smaller,
¢ € S(PX) defined as ¢ = (A; — 1, Ay — 2). There are only four functions
u: supp ® — X such that u(A) € A and thus only four functions ¢ in ¢(®):

ulz(A1|—>(E, A2l—>y) ©1 =
UQ:(Al’—).’)S7 Ag’—)Z)
uz = (A1 =y, Azr—y) 3= (y > 3)
U4:(A1i—>y, A2|—>Z)

Observe that the function ¢ = (x — 1,y — 1,z — 1) belongs to dx(P) but not
to ¢(P). Nevertheless ¢ can be retrieved as the convex combination % o1+ % 3.

! More precisely, we should write S(u)(®’') where &' is the restriction of @ to supp P.
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Our key result states that every ¢ € dx(P) can be written as a convex
combination (performed in the S-algebra (SX, u%)) of functions in ¢(®), at least
when S is a positive semifield, which by Remark 9 and Proposition 10 satisfies
all the conditions that make (6) a weak distributive law. The proof is laborious
and omitted here: we only remark that divisions in S play a crucial role in it.

Theorem 21. Let S be a positive semifield. Then for all sets X and ® € SPX

b (@) = { pS (@) |0 € 82X Y W) = 1, supp¥ C (@) § = (). (8)
peSX

Remark 22. If we drop the hypothesis of semifield and only have the minimal
assumptions of Theorem 17, then (8) does not hold any more: S = N is a
counterexample. Indeed, in this case every subset of SX is convex with respect
to u% (see Example 15), therefore we would have dx (®) = ¢(®), which is false:
the function ¢ of Example 18 is an example of an element in dx (D) \ ¢(P).

Remark 23. When S = Bool (which is a positive semifield), the monad S coin-
cides with the monad Py. The function ¢(-) in (7) can then be described as

¢(A) = {Ps(u)(A) | u: A — X such that VA € A.u(A) € A}

for all A € P;PX. It is worth remarking that this is the transformation x
appearing in Example 9 of [27] (which is in turn equivalent to the one in Example
2.4.7 of [31]). This transformation was erroneously supposed to be a distributive
law, as it fails to be natural (see [28]). However, by taking its convex closure, as
displayed in (8), one can turn it into a weak distributive law.

5 The Weak Lifting of P to EM(S)

By exploiting the characterisation of the weak distributive law ¢ (Theorem 21),
we can now describe the weak lifting of P to EM(S) generated by .

Recall from Definition 13 that P?X is the set of convex subsets of X with
respect to the S-algebra a: SX — X. The functions (x4 : P¢X — PX and
T(X,a): PX — P2X are defined for all A € P¢X and B € PX as

a

L(X,a) (A) =A and 7T(X,a) (B) = E s (9)

that is ¢(x q) is just the obvious set inclusion and 7(x ,) performs the convex
closure in a. The function o, : SP$X — PIX is defined for all & € SP!X as

aa(®) = {alp) | ¢ €c(P)}. (10)

To be completely formal, above we should have written ¢(S(¢)(®)) in place
of ¢(®), but it is immediate to see that the two sets coincide. Proving that
aq: SP!X — PrX is well defined (namely, a,(P) is a convex set) and forms an
S-algebra requires some ingenuity and will be shown later in Section 5.1. The
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assignment (X, a) — (P2X,a,) gives rise to a functor P: EM(S) — EM(S)
defined on morphisms f: (X,a) — (X', d’) as

P(f)(A) = Pf(A) (11)

for all A € P2X. For all (X,a) in EM(S), nfi ¢ (X,a) — P(X,a) and
pst_a) : PP(X,a) — P(X,a) are defined for z € X and A € P (P?X) as

M@ ={z}  and  pfy (A= ] A (12)
AcA

Theorem 24. Let S be a positive semifield. Then the canonical weak lifting
of the powerset monad P to EM(S), determined by (8), consists of the monad
(P,n",uP) on EM(S) defined as in (10), (11), (12) and the natural transfor-
mations v: USP — PUS and 7: PUS — USP defined as in (9).

It is worth spelling out the left-semimodule structure on P%X corresponding
to the S-algebra o, : SPIX — P X. Let us start with A-*+ A for some A € P¢X.
By (5), A% A = 4(®) where @ = (A — A). By (10), aq(P) = {alp) |
¢ € ¢(P)}. Following the definition of ¢(®P) given in (7), one has to consider
functions w: supp® — X such that u(B) € B for all B € supp®: if X # 0,
then supp® = {A} and thus, for each x € A, there is exactly one function
Uy : supp® — X mapping A into z. It is immediate to see that S(u,)(P) is
exactly the function (z — A) and thus a(S(uz ) (D)) is, by (5), A-%z. Now if A = 0,
then supp ® = 0, so there is exactly one function u: supp® — X and S(u)(®P)
is the function mapping all + € X into 0 and thus, by (5), a(S(u)(®)) = 0°.
Summarising,

)\.aaA:{{)\'“wlxeA} ifA£0 1)

{0%} ifA=0
Following similar lines of thoughts, one can check that
A+ B={z+"y | € A, ye B} and 0% = {0%}. (14)

Remark 25. By comparing (14) and (13) with (4) and (5) in [25], it is immediate
to see that our monad P coincides with a slight variation of Jacobs’s convex
powerset monad C, the only difference being that we do allow for @ to be in
PeX. Jacobs insisted on the necessity of C(X) to be the set of non-empty convex
subsets of X, because otherwise he was not able to define a semimodule structure
on C(X) such that 0- 0 = {0%}. However, we do manage to do so, since by (13),
0-A=0°for all A and in particular for A = (). At first sight, this may look like
an ad-hoc solution, but this is not the case: it is intrinsic in the definition of the
unique weak lifting of P to EM(S), as stated by Theorem 24 and shown next.

5.1 Proof of Theorem 24

By Theorem 5, the weak distributive law (6) corresponds to a weak lifting P of
P to EM(S), which we are going to show coincides with the data of (9)-(12). The
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image along P of a S-algebra (X,a) will be a set Y together with a structure
map «, that makes it a S-algebra in turn. Garner [15, Proposition 13] gives
us the recipe to build Y and «, appropriately. Y is obtained by splitting the
following idempotent in Set:

S
exa) = PX 25 S(PX) 25 p(SX) Lo PX (15)

as a composite €(x q) = L(X,a) © T(X,a); Where T(x q) is the corestriction of e(x )
to its image and u(x ) is the set-inclusion of the image of e x ) into PX. In
other words, Y is the set of fixed points of e(x 4). a4 is obtained as the composite
St(x,a) Sx

T(X,a)

a, = SY SPX PSX - Pa pX Y.

Let us, then, fix an S-algebra (X,a). Given A € PX, we have n5(4) =
Ay PX — S, the Dirac-function centred in A. The set §x(n2y(A4)) has a
simple description, shown in the next Lemma.

Lemma 26. For all A e PX

Ix(npx(A)) = {so €SX | suppp C A, Y p(x) = 1}-

zeX

The image along A of the idempotent e is therefore

e(A) = Pa(dx (npx (A))) = {a(w) | o € SX,suppp C A, Y plx) = 1} =A%
reX

Hence the idempotent e computes the convex closure of elements of PX and
its fixed points are precisely the convex subsets of X with respect to the struc-
ture map a. Therefore, the carrier set of P(X,a) is precisely P%X, the natural
transformations 7 and ¢ are, respectively, the convex closure operator and the
set-inclusion of P2X into PX as in (9).

PeX is then equipped with a structure map a,: SP?X — P?X given by
St(x,a)

dOx T(X,a)

ag = SPYX SPX PSX L% PX PoX.
Let us try to calculate ay: given @: P?X — S with finite support, we have that
S(t(x,a))(P) is just the extension of & to PX which assigns 0 to each non-convex

subset of X. If we write ¢ instead of ¢(x ) for short, we have

a

aq(®) = Pa(dx (S(t)(@))) - (16)
Next, we can use the following technical result.

Proposition 27. Let (X, a) be a S-algebra. If A is a convex subset of (SX, u%;),
then Pa(A) is convez in (X, a).
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Since dx (®') is the convex closure of ¢(®') in (SX, u$;) for every &' € SPX,
by Proposition 27 we can avoid to perform the a-convex closure in (16). Therefore
S
— ek
aa(P) = Pa(dx(S(1)(2))) = Pa(c(S()(2)) ™).

In the next Proposition we show that also the ui—convex closure is superfluous,
due to the fact that & € SP*X (and not simply SPX), thus obtaining (10).

Proposition 28. Let S be a positive semifield, (X,a) a S-algebra, ® € SP?X.
Then Pa(dx (S()(P))) = Pa(c(S(t)(P))).

Proof. In this proof we shall simply write & instead of the more verbose S(¢)(®P).
We want to prove that

Pa(dx (D)) =

{dw|¢esxauwwm¢-+xﬂpneAvxeX¢¢m: EZgHA% (17)
A€ supp P
u(A)=z

where we have, by Theorem 21, that

Pa(6x(®)) = {a(uX(9)) | ¥ € X, Y W(p) = 1,5upp¥ C (®)}.
peSX

First of all, § is not a S-algebra, because there is no map S(@) — 0 given that
S(@) ={0: 0 — S}, hence X # 0. Next, if # =e: PX — S, namely the function
constant to 0, then ¢(®) = {e: X — S} therefore one can easily see that the
left-hand side of (17) is equal to {a(e: X — S)}. For the same reason, the right-
hand side is also equal to {a(e: X — S)}. Moreover, if () # 0, then there is
no u: supp® — X such that u(0) € 0, so ¢(P) = 0 and so is the left-hand side
of (17); for the same reason, also the right-hand side is empty.

Suppose then, for the rest of the proof, that & # 0 and that ¢() = 0.

For the right-to-left inclusion in (17): given 1 € ¢(®), consider ¥ = 12 (¢) =
Ay € S2X. Then ¥ clearly satisfies all the required properties and uf( () = .

The left-to-right inclusion is more laborious. Let ¥ € S2X be such that
> vesx P(x) = 1 and such that supp¥ C ¢(®), that is, for all p € supp¥
there is u?: supp® — X such that u¥(A4) € A for all A € supp® and ¢ =
S(u?)(®@). We have to show that a(u(¥)) = a(v) for some ¢ € SX of the form
> Acsupp & P(A) - u(A) for some choice function u: supp @ — X. Notice that the
given ¥ is a convex linear combination of functions ¢’s in SX like the one we have
to produce: the trick will be to exploit the fact that each A € supp @ is convex.
Here we shall only give a sketch of the proof. Suppose supp ® = {A1,...,A,}
and supp ¥ = {p',...,¢©™}. Call v/ the choice function that generates ’. Then
¥ is of this form:

ul(Al) — @(Al) um(Al) —> @(Al)
w—( : A R HW@M>
ul(A,) — ®(A,) u™(Ay) — P(A,)

el P
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Define the following element of S?X:

ul(Al) — g’(QOl) ul(An) = W(Qpl)
u™(Ay) = T(p™) u™(Ap) = (™)

Observe that u'(A;),...,u™(A;) € A; by definition, and A; is convex by assump-
tion: since Z (gpj) = 1 we have that a(x?) € A;. Set then u(4;) = a(x?)
and define ¢ = S(a)(¥’): we have ¢ € ¢(P) with u as the generating choice
function. It is not difficult to see that u$ (¥) = us (¥'), therefore we have

a() = a(S(a)(¥)) = a(pX (")) = a(uX (¥))
as desired. 0O

The rest of the proof of Theorem 24, concerning the action of P on morphisms
and the unit and multiplication of the monad P, consists in following the recipe
provided by Garner [15].

6 The Composite Monad: an Algebraic Presentation

We can now compose the two monads P and S by considering the monad arising
from the composition of the following two adjunctions:

S F75
= T 5
Set 1 EM(S) L EM(P)
~_ -~~~
Us P

Direct calculations show that the resulting endofunctor on Set, which we call
P.S, maps a set X and a function f: X — Y into, respectively,

PSX = PEX(SX)  and  P.S(f)A) = {S(/)®) | dc A} (18)

for all A € P.SX. For all sets X, n=: X — P.SX and pi®: P.SP.SX —
P.SX are defined as

t@) ={4.)  and  RS() = | a5 (2) (19)
e

forall z € X and &« € P.SP.SX.

Theorem 29. Let S be a positive semifield. Then the canonical weak distribu-
tive law §: SP — PS given in Theorem 21 induces a monad P.S on Set with
endofunctor, unit and multiplication defined as in (18) and (19).
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Recall from Remark 25 that the monad C: EM(S) — EM(S) from [25] coin-
cides with our lifting 2 modulo the absence of the empty set. The same happens
for the composite monad, which is named CM in [25]. The absence of § in CM
turns out to be rather problematic for Jacobs. Indeed, in order to use the stan-
dard framework of coalgebraic trace semantics [20], one would need the Kleisli
category KI(CM) to be enriched over CPPO, the category of w-complete partial
orders with bottom and continuous functions. KI(CM) is not CPPQ-enriched
since there is no bottom element in CM(X). Instead, in P.SX the bottom is
exactly the empty set; moreover, KI(P.S) enjoys the properties required by [20].

Theorem 30. The category KI(P.S) is enriched over CPPQ and satisfies the
left-strictness condition: for all f: X — P.SY and Z set, Ly zof = 1lxz.

It is immediate that every homset in KI(P.S) carries a complete partial order.
Showing that composition of arrows in K1(P.S) preserves joins (of w-chains)
requires more work: the proof, omitted here, crucially relies on the algebraic
theory presenting the monad P.S, illustrated next.

An Algebraic Presentation. Recall that an algebraic theory is a pair T =
(X, E) where X is a signature, whose elements are called operations, to each of
which is assigned a cardinal number called its arity, while F is a class of formal
equations between X-terms. An algebra for the theory 7T is a set A together with,
for each operation o of arity s in X, a function 04 : A® — A satisfying the equa-
tions of E. A homomorphism of algebras is a function f: A — B respecting the
operations of X in their realisations in A and B. Algebras and homomorphisms
of an algebraic theory T form a category Alg(7).

Definition 31. Let M be a monad on Set, and T an algebraic theory. We say
that T presents M if and only if EM(M) and Alg(T) are isomorphic.

Left S-semimodules are algebras for the theory LSM = (Xrsa, Ecsm)
where Ygrsm = {+,0} U{A- | A € S} and Ecsa is the set of axioms in
Table 1. As already mentioned in Section 3, left S-semimodules are exactly S-
algebras and morphisms of S-semimodules coincide with those of S-algebras.
Thus, the theory LSM presents the monad S.

Similarly, semilattices are algebras for the theory SL = (¥Xs., Esc) where
Yse = {U, L} and Es. is the set of axioms in Table 1. It is well known that
semilattices are algebras for the finite powerset monad. Actually, this monad is
presented by SL. In order to present the full powerset monad P we need to take
joins of arbitrary arity. A complete semilattice is a set X equipped with joins
||,ca® for all-mot necessarily finite-A C X. Formally the (infinitary) theory
of complete semilattices is given as CSL = (Xesc, Ecsr) where Yese = {[; |
I set} and Eesc is the set of axioms displayed in Table 3 (for a detailed treatment
of infinitary algebraic theories see, for example, [30]).

We can now illustrate the theory (X, FE) presenting the composed monad
P.S: the operations in X are exactly those of complete semilattices and S-
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Table 3. The sets of axioms Ecs, for complete semilattices: the second axiom gen-
eralises the usual idempotency and commutativity properties of finitary U, while the
third one generalises associativity and neutrality of | |, = L.

I_liE{O} Ti = Zo

Ujes i = Uier @s) for all f: I — J surjective
Wier @i = Ujey Uigg-1qyy @i forall f: T —J

semimodules, while the axioms are those of complete semilattices and S-semi-
modules together with the set Ep of distributivity axioms illustrated below.

Al Joi=||r-z for X0, | Ja+|]uy= || =ty (20
i€l i€l iel JjE€J (i,9)eIxJ
In short, ¥ = Yesr U X s and E = Eesy U Ersap U Ep.
Theorem 32. The monad P.S is presented by the algebraic theory (X, E).

The presentation crucially relies on the fact that P.S is obtained by com-
posing P and S via 4. Indeed, we know from general results in [11,15] that P.S-
algebras are in one to one correspondence with d-algebras [3], namely triples
(X, a,b) such that a: SX — X is a S-algebra, b: PX — X is a P-algebra and
the following diagram commutes.

SPX ox PSX
Sbl lpa
SX PX (21)
S T
X

The S-algebra a corresponds to a S-semimodule (X, +,0, A-), the P-algebra b
to a complete lattice (X,| |;) and the commutativity of diagram (21) expresses
exactly the distributivity axioms in (20).

Ezample 33. Let S be RY and let [a,b] with a,b € RT denote the set {x € RT |
a <z < b} and [a,0) the set {x € RT | a < z}. For 1 = {z}, P.S(1) = {0} U
{[a,b] | a,b € RT}U{[a,+00) | a € RT}. The P.S-algebra ul=%: P.SP.S1 —
P.S1 induces a §-algebra where the structure of complete lattice is given as?

|_| 4= [infier, a;,sup;ep b)) if, for all i € I, A; = [a;, bi] Asup;c; by € RY
by ’ [inf;er a;, 00) otherwise
The RT-semimodule is as expected, e.g., [a1,b1] + [az, b2] = [a1 + aa, b1 + ba).

2 For the sake of brevity, we are ignoring the case where some A; = .
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Finite Joins and Finitely Generated Convex Sets. We now consider the
algebraic theory (X', E’) obtained by restricting (X, F) to finitary joins. More
precisely, we fix

Y =YsrUXrsm E'=Es UErspm U Ep

where (Xs., Esr) is the algebraic theory for semilatices, (Xzsa, Ecsa) is the
one for S-semimodules, and Eps is the set of distributivity axioms illustrated
in Table 1. Thanks to the characterisation provided by Theorem 32, we easily
obtain a function translating X’-terms into convex subsets.

Proposition 34. Let T g/ (X) be the set of X'-terms with variables in X quo-
tiented by E'. Let []x: T g (X) = P.S(X) be the function defined as

ﬂ/\~t]]_{{>\.u5f | felt]} ifr#0

{O“S } otherwise
[ty +t2] = {fr ++° f25| fi €], f2 € [t]}
[t Uts] =[] U Tta]

Let [-]: Tsr gr — P.S be the family {[-]x }xe|set)- Then [-]: Txr pr — PeS is a
map of monads and, moreover, each [-]x: T/ g/ (X) = P.S(X) is injective.

We say that a set A € P.S(X) is finitely generated if there exists a finite set
B C 8(X) such that B = A. We write P¢.S(X) for the set of all A € P.S(X)
that are finitely generated. The assignment X +— P;.S(X) gives rise to a monad
PrcS: Set — Set where the action on functions, the unit and the multiplication
are defined as for P.S.

Theorem 35. The monads Ts g and Py.S are isomorphic. Therefore (X', E')
is a presentation for the monad Py S.

Example 36. Recall P.S(1) for S = RT from Example 33. By restricting to
the finitely generated convex sets, one obtains Ps.S(1) = {0} U {[a,b] | a,b €
RT}, that is the sets of the form [a,c0) are not finitely generated. Table 4
illustrates the isomorphism [-]: T g/ (1) = P.S(1). It is worth observing that
every closed interval [a, b] is denoted by a term in Tsv g/ (1) for 1 = {z}: indeed,
[(a-z)U(b-z)] = [a,b]. For 2 = {x,y}, Pr.S(2) is the set containing all convex
polygons: for instance the term (11 -z +s1-y)U(ro-x+s2-y) U (rg- x4+ s3-y)
denote a triangle with vertexes (r;,s;). For n = {zg,...2n_1}, it is easy to see
that P;.S(n) contains all convex n-polytopes.

7 Conclusions: Related and Future Work

Our work was inspired by [17] where Goy and Petrisan compose the monads of
powerset and probability distributions by means of a weak distributive law in
the sense of Garner [15]. Our results also heavily rely on the work of Clementino
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Table 4. The inductive definition of the function [-]1: T g/ (1) — P.S(1) for 1 = {z}.

N-a, b ifA#0, [f] = [a,b]

[A-t]=10 ifX£0, [t]=0
[0,0] otherwise
[=] = [1,1] S lar +a2,b1 +ba] if [t] = [as, bi]
[0] = [070] [t -t = {0 otherwise
[L] = [min a;, max b;] if [t;] = [as, bi]
_ ) lax, bi] if [t1] = [a1,b1], [t2] =0
e T if [ta] = [az, ba], [ta] = 0
0 otherwise

et al. [12] that illustrates necessary and sufficient conditions on a semiring S
for the existence of a weak distributive law §: SP — PS. However, to the best
of our knowledge, the alternative characterisation of & provided by Theorem 21
was never shown.

Such characterisation is essential for giving a handy description of the lifting
P: EM(S) — EM(S) (Theorem 24) as well as to observe the strong relationships
with the work of Jacobs (Remark 25) and the one of Klin and Rot (Remark 23).
The weak distributive law ¢ also plays a key role in providing the algebraic
theories presenting the composed monad P.S (Theorem 24) and its finitary
restriction Pr.S (Theorem 35). These two theories resemble those appearing in,
respectively, [17] and [10] where the monad of probability distributions plays the
role of the monad S in our work.

Theorem 30 allows to reuse the framework of coalgebraic trace semantics [20]
for modelling over K1(P.S) systems with both nondeterminism and quantitative
features. The alternative framework based on coalgebras over EM(P.S) directly
leads to nondeterministic weighted automata. A proper comparison with those
in [13] is left as future work. Thanks to the abstract results in [7], language
equivalence for such coalgebras could be checked by means of coinductive up-
to techniques. It is worth remarking that, since § is a weak distributive law,
then thanks to the work in [16], up-to techniques are also sound for “convex-
bisimilarity” (in coalgebraic terms, behavioural equivalence for the lifted functor
P: EM(S) — EM(S)).

We conclude by recalling that we have two main examples of positive semi-
fields: Bool and R*. Booleans could lead to a coalgebraic modal logic and trace
semantics for alternating automata in the style of [27]. For Rt we hope that
exploiting the ideas in [34] our monad could shed some lights on the behaviour
of linear dynamical systems featuring some sort of nondeterminism.
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