Skip to main content

Using a Genetic Algorithm-Based Hyper-Heuristic to Tune MOEA/D for a Set of Benchmark Test Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12654))

Included in the following conference series:

Abstract

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) is one of the most popular algorithms in the EMO community. In the last decade, the high performance of MOEA/D has been reported in many studies. In general, MOEA/D needs a different implementation for a different type of problems with respect to its components such as a scalarizing function, a neighborhood structure, a normalization mechanism and genetic operators. For MOEA/D users who do not have the in-depth knowledge about the algorithm, it is not easy to implement an appropriate algorithm that is suitable for their problems at hand. In our previous studies, we have suggested an offline genetic algorithm-based hyper-heuristic method to tune MOEA/D for a single problem. However, in real-world situations, users may want to use an algorithm with robust performance over many problems. In this paper, we improve the offline genetic algorithm-based hyper-heuristic method for tuning a set of problems. The offline hyper-heuristic procedure is applied to 26 benchmark test problems. The obtained MOEA/D implementations are compared with six decomposition-based EMO algorithms. The experimental results show that the tuned MOEA/D outperformed the compared algorithms on many test problems. The tuned MOEA/D also shows good (and stable) performance over a set of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of 1st ICGA, pp. 93–100 (1985)

    Google Scholar 

  2. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  3. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: Proceedings of IEEE International Conference on System, Man, and Cybernetics, San Antonio, USA, pp. 1758–1763 (2009)

    Google Scholar 

  4. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multi-objective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  5. Wessing, S., Beume, N., Rudolph, G., Naujoks, B.: Parameter tuning boosts performance of variation operators in multiobjective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 728–737. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_73

    Chapter  Google Scholar 

  6. Pang, L.M., Ishibuchi, H., Shang, K.: Offline automatic parameter tuning of MOEA/D using genetic algorithms. In: 2019 IEEE SSCI, Xiamen, China, pp. 1889–1897 (2019)

    Google Scholar 

  7. Pang, L.M., Ishibuchi, H., Shang, K.: Decomposition-based multi-objective evolutionary algorithm design under two algorithm frameworks. IEEE Access 8, 163197–163208 (2020)

    Article  Google Scholar 

  8. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  9. Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing function in MOEA/D for many-objective knapsack problems. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 231–246. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44973-4_24

    Chapter  Google Scholar 

  10. Sato, H.: Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), Vancouver, Canada, pp. 645–652 (2014)

    Google Scholar 

  11. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016)

    Article  Google Scholar 

  12. Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between neighborhood size and MOEA/D performance on many-objective problems. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 459–474. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_35

    Chapter  Google Scholar 

  13. Ishibuchi, H., Doi, K., Nojima, Y.: On the effect of normalization in MOEA/D for multiobjective and many-objective optimization. Complex Intell. Syst. 3(4), 279–294 (2017)

    Article  Google Scholar 

  14. Deb, K., Argawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Deb, K., Deb, D.: Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 4(1), 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  16. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, London (2010). https://doi.org/10.1007/978-1-84996-129-5

    Book  MATH  Google Scholar 

  17. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  18. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  19. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)

    Article  Google Scholar 

  20. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), Honolulu, USA, pp. 825–830 (2002)

    Google Scholar 

  21. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  22. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

    Article  Google Scholar 

  23. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  24. Li, H., Zhang, Q.: Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  25. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC 2009 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Trondheim, Norway, pp. 1–6 (2009)

    Google Scholar 

  26. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  27. Ishibuchi, H., He, L., Shang, K.: Regular pareto front shape is not realistic. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, pp. 2034–2041 (2019)

    Google Scholar 

  28. Xu, Q., Xu, Z., Ma, T.: A survey of multiobjective evolutionary algorithms based on decomposition: variants, challenges, and future directions. IEEE Access 8, 41588–41614 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 62002152, 61876075), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), the Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, L.M., Ishibuchi, H., Shang, K. (2021). Using a Genetic Algorithm-Based Hyper-Heuristic to Tune MOEA/D for a Set of Benchmark Test Problems. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics