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Abstract. This paper proposes a novel Self-Adaptive algorithm for
Multi-Objective Constrained Optimization by using Radial Basis Func-
tion Approximations, SAMO-COBRA. The algorithm automatically
determines the best Radial Basis Function-fit as surrogates for the objec-
tives as well as the constraints, to find new feasible Pareto-optimal
solutions. The algorithm also uses hyper-parameter tuning on the fly
to improve its local search strategy. In every iteration one solution is
added and evaluated, resulting in a strategy requiring only a small num-
ber of function evaluations for finding a set of feasible solutions on the
Pareto frontier. The proposed algorithm is compared to a wide set of
other state-of-the-art algorithms (NSGA-II, NSGA-III, CEGO, SMES-
RBF) on 18 constrained multi-objective problems. In the experiments we
show that our algorithm outperforms the other algorithms in terms of
achieved Hypervolume after given a fixed small evaluation budget. These
results suggest that SAMO-COBRA is a good choice for optimizing con-
strained multi-objective optimization problems with expensive function
evaluations.

Keywords: Constrained optimization · Multi-objective optimization ·
Optimization under limited budgets

1 Introduction

According to a survey about adaptive sampling for global meta-modeling, the
interest in efficient global meta-models and adaptive sampling techniques has
increased over the past years [17]. Additionally, preliminary results of a recently
executed questionnaire [5] shows that real world problems often involve con-
tinuous optimization variables, constraints, and one or more objectives. The
questionnaire responses also indicate that it is often the case that the topologi-
cal characteristics of the objective space are unknown and long evaluation times
make the problems hard to solve. However, to the author’s best knowledge, there
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is no fast multi-objective constrained optimization algorithm capable of approx-
imating the Pareto frontier (PF) with a small number of function evaluations.

In this paper, the authors propose a novel Self-Adaptive algorithm for Multi-
Objective Constrained Optimization by using Radial Basis Function Approxima-
tions (SAMO-COBRA). The algorithm is designed to efficiently determine the
Pareto frontier of constrained multi-objective problems. The algorithm models
the constraints and objectives with independent Radial Basis Functions (RBFs)
using different kernels, automatically chooses the best RBF-fit, automatically
tunes hyper-parameters, and aims to find feasible Pareto-optimal solutions. Here
a constrained multi-objective problem is defined as follows:

minimize: f : Ω → R
k , f(x) = (f1(x), . . . , fk(x))�

subject to: gi(x) ≤ 0 ∀i ∈ {1, . . . , m}
x ∈ Ω ⊂ R

d.

In this formulation k is the number of objectives, m is the number of constraints
and d is the number of parameters. Without loss of generality, maximisation
problems are transformed to minimization problems. A feasible Pareto-optimal
solution is defined in Definition 1.

Definition 1. (Feasible Pareto-optimal solution): x ∈ Ω is called feasible
Pareto-optimal with respect to Ω and gi(x) ≤ 0 ∀i ∈ {1, . . . , m}, if and only if
there is no solution x′ for which v = f(x′) = (f1(x′), . . . , fk(x′))� dominates
u = f(x) = (f1(x), . . . , fk(x))� where gi(x) ≤ 0 and gi(x′) ≤ 0 ∀i ∈ {1, . . . , m}.

The algorithm performance is compared to the performance of NSGA-II [10],
NSGA-III [15], CEGO [29], and SMES-RBF [8]. In the results we show that
SAMO-COBRA only requires a small number of function evaluations to find fea-
sible Pareto-optimal solutions. This makes SAMO-COBRA a good choice when
optimizing problems with expensive or time consuming function evaluations.

The remainder of this paper is organized as follows: In Sect. 2 related work is
discussed. In Sect. 3 the newly proposed SAMO-COBRA algorithm is described.
In Sect. 4 the experiments conducted to compare SAMO-COBRA to state-of-the-
art algorithms are described. In Sect. 5 the results are reported and discussed,
and in Sect. 6 the conclusions are drawn.

2 Related Work

Existing work on surrogate assisted optimization is typically limited to a sub-
set of three relevant requirements (multi-objective, constrained, and speed). For
example, methods exist for solving constrained single objective problems fast
(e.g. SACOBRA [3]), for multi-objective optimization without efficient con-
straint handling techniques (e.g. SMS-EGO [21] and PAREGO [16]), or for
constrained multi-objective optimization without using meta-models, leading
to a lot of required function evaluations (e.g. NSGA-II [10], NSGA-III [15],
SPEA2 [30], and SMS-EMOA [4]). Some recently proposed algorithms address
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all three requirements, however with computational efforts that grows cubically
in iterations and exponentially for each additional decision parameter due to the
use of Kriging surrogates (e.g. CEGO [29], ECMO [25]).

Only very occasionally a surrogate based algorithm is published that deals
with both constraints and multiple objectives in an effective manner without
using a Kriging surrogate (e.g., Datta’s and Regis’ SMES-RBF [8]). SMES-RBF
is a surrogate-assisted evolutionary strategy that uses cubic Radial Basis Func-
tions as a surrogate for the objectives and constraints to estimate the actual
function values. The most promising solution(s) according to a non-dominated
sorting procedure are then evaluated on the real objective and constraint
function.

3 Constrained Multi-objective Optimization Algorithm

In this section, the new SAMO-COBRA algorithm is introduced. It is designed
for dealing with continuous decision variables, multiple objectives, and multiple
complex constraints in an efficient manner. The idea behind the algorithm is
that in every iteration, for each objective and for each constraint independently,
the best transformation and the best RBF kernel is sought. In each iteration the
best fit is used to search for a new unseen feasible Pareto efficient point that
contributes the most to the HyperVolume (HV) which is computed between a ref-
erence point and the Pareto-front (PF). The pseudocode of SAMO-COBRA can
be found in Algorithm 1, a Python implementation can be found on GitHub [28].
In the subsections below, the algorithm is explained in more detail.

3.1 Initial Design

Bossek et al. showed empirically that when dealing with sequential model based
optimization in most cases it is best to use the Halton sampling strategy with
an as small as possible initial sample [6]. Several experiments confirmed the
hypothesis that the smallest possible initial sample size also leads to the best
results when applied on most constrained multi-objective problems from Sect. 4.

An RBF model that models the relationship between the input space and
the output space can already be trained with d+1 initial samples. It is therefore
advised when using SAMO-COBRA to create an initial Halton sample of size
d + 1 before the sequential optimization procedure starts. Every sample in the
initial design is then evaluated (line 2–4 of Algorithm 1) so that all samples have
their corresponding constraint and objective scores.

3.2 Radial Basis Function Fitting and Interpolation

RBF interpolation approximates a function by fitting a linear weighted combi-
nation of RBFs [3]. The challenge is to find correct weights (θ) and a good RBF
kernel ϕ(‖x−c‖). An RBF is only dependent on the distance between the input
point x to the center c. The RBFs used in this work take each evaluated point
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Algorithm 1: SAMO-COBRA. Input: Objective functions f(x), con-
straint function(s) g(x), decision parameters’ lower and upper bounds
[lb,ub] ⊂ R

d, reference point ref ∈ R
k, number of initial samples N ,

maximum evaluation budget Nmax, RBFkernels (ϕ) = {cubic, gaussian,
multiquadric, invquadric, invmultiquadric, thinplatespline} Output:
Evaluated feasible Pareto efficient solutions.
1 Function SAMO-COBRA(f , g, [lb,ub], ref , N , Nmax, RBFkernels):

2 X ← {x1, · · · ,xN } � Generate initial design, X ∈ R
d×N

3 F ← f(X) � Obtain objective scores, F ∈ R
k×N

4 G ← g(X) � Obtain constraint scores, G ∈ R
m×N

5 for i ← 1 to k + m do
6 RBF ∗

i ← (ϕ=cubic, Plog=0) � Initialize RBF configuration

7 end
8 while N < Nmax do

9 X̂ ← Scale(X, [−1, 1]d) � Scale input space to [−1, 1]d

10 F̃ ← Plog(F) � See function plog in Eq. (5)

11 G̃ ← Plog(G) � See function plog in Eq. (5)

12 F̂ ← Standardize(F) � Standardize objective space

13 Ĝ ← Scale Constraint(G) � 0 remains feasibility boundary

14 for ϕ ∈ RBFkernels do � For each kernel

15 for i ← 1 to k do � for each objective

16 Ŝϕ
i ← FitRBF(X̂, F̂(i,·), ϕ) � Fit RBF without Plog

17 S̃ϕ
i ← FitRBF(X̂, F̃(i,·), ϕ) � Fit RBF with Plog

18 end
19 for j ← 1 to m do � for each constraint

20 Ŝϕ

k+j ← FitRBF(X̂, Ĝ(j,·), ϕ) � Fit RBF without Plog

21 S̃ϕ

k+j ← FitRBF(X̂, G̃(j,·), ϕ) � Fit RBF with Plog

22 end

23 end

24 S∗ ←
{

S
(RBF∗

i )
i | ∀i = 1, . . . , (k + m)

}
� Apply best configuration

25 PF ←Pareto(X,F,G) � PF indicator see Definition 1,

PF ∈ {0, 1}N

26 x∗ ← Maximize(HV, PF, ref , S∗) � Find best new solution

27 xnew ← Scale(x∗, [lb,ub]) � Scale to original scale

28 N ← N + 1 � Increase iteration counter to new matrix sizes

29 X ← [X xnew] � Add new solution, X ∈ R
d×N

30 F ← [F f(xnew)] � Add evaluated objectives, F ∈ R
k×N

31 G ← [G g(xnew)] � Add evaluated constraints, G ∈ R
m×N

� Get best RBF configuration and Squared Errors, Section 3.6

32 RBF ∗,SE ←SelectBestRBF(SE, Ŝ, S̃,x∗,F,G,PF, N)

33 end

34 return (F(·,PF), G(·,PF), X(·,PF))
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as the centroid of the function, and the weighted linear combination of RBFs
always produces a perfect fit through the training points. Besides the perfect
fit on the training points, the linear combination of the RBFs can also give a
reasonable approximation of the unknown area.

Any function which is only dependent on the distance from a specific point
to another point belongs to the group of RBFs. The RBF kernels (ϕ) considered
in this work are the cubic with ϕ(r) = r3, Gaussian with ϕ(r) = exp (−(ε · r)2),
multiquadric with ϕ(r) =

√
1 + (ε · r)2, inverse quadratic with ϕ(r) = (1 + (ε ·

r)2)−1, inverse multiquadric with ϕ(r) = (
√

1 + (ε · r)2)−1, and thin plate spline
with ϕ(r) = r2 log r. Note that we keep the shape/width parameter ε for every
individual RBF constant such as proposed by Urquhart et al. [27]. Moreover, all
shape parameters are fixed to ε = 1.

Finding suitable linear weighted combinations θ of the RBFs can be done by
inverting Φ ∈ R

n×n where Φi,j = ϕ(‖xi − xj‖):

θ = Φ−1 · f (1)

Here f is a vector of length n with the function values belonging to one of the
objectives or constraints. Because Φ is not always invertible, Micchelli intro-
duced RBFs with a polynomial tail, better known as augmented RBFs [18].
In this work we use augmented RBFs with a second order polynomial tail.
The polynomial tail is created by extending the original matrix Φ with P =
(1, xi1, . . . , xid, x

2
i,1, . . . , x

2
id), in its ith row, where xij is the jth component of

vector xi, for i = 1, . . . , n and j = 1, . . . , d, P�, and zeros 0(2d+1)×(2d+1), leading
to 1 + 2d more weights μ to learn.

[
Φ P
P� 0(2d+1)×(2d+1)

] [
θ
μ

]
=

[
f

02d+1

]
(2)

Now that we can compute the weights θ and μ with Eq. 1 (Lines 16, 17, 20, 21 of
Algorithm 1), we can for each unseen input x′ interpolate/predict the function
value (f ′) by using Eq. (3).

f ′ = Φ′ ·
[
θ
μ

]
=

n∑

i=1

θiϕ(‖x′ − xi‖) + μ0 +
d∑

l=1

μlx′
l +

d∑

l=1

μlx′2
l , x ∈ R

d (3)

3.3 Scaling

In SAMO-COBRA, various scaling and transformation functions are used in
lines 9–13 of the algorithm. This is done to improve the predictive accuracy of
the RBF surrogate models. The four functions Scale, Plog, Standardize and
the Scale Constraint are described below.

Scale: The input space/decision variables are scaled into the range [−1, 1] with
x = 2 · (x−xlb)/(xub −xlb)−1. By scaling large values in the input space, we
can prevent computationally singular (ill-conditioned) coefficient matrices in
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Eq. (1). In case we keep large values in the input space, the linear equation
solver will terminate with an error, or it will result in a large root mean
square error [3]. Additionally, when fitting the RBFs, a small change in one
of the variables, is relatively the same small change in all the other variables,
making each variable in the basis equally important and equally sensitive.

Standardize: The relationship between the input space and the objective function
values is modelled with RBF surrogates. Besides this relationship, Bagheri et
al. also exploited similarities between RBF and Kriging surrogates to come
up with an uncertainty quantification method [2]. The formula for this uncer-
tainty quantification method is given in Eq. (4).

ÛRBF = ϕ(‖x′ − x′‖) − Φ′�Φ−1Φ′ (4)

The uncertainty (ÛRBF ) of solutions far away from earlier evaluated solu-
tions is higher compared to solutions close to earlier evaluated solutions. This
uncertainty quantification method can therefore help in exploration and pre-
vent the algorithm from getting stuck in a local optimal solution. However,
as can be derived from Eq. (4), the uncertainty quantification method is only
dependent on the input space and not on the scale of the objective and/or
weights of the RBF models. We therefore standardize the objective values as
y′ = (y − ȳ)/σ so that the uncertainty scale and the objective scale match.
Here σ is the standard deviation of y, and ȳ the mean of y.

Scale Constraint: The constraint evaluation function should return a continuous
value, namely the amount by which the constraint is violated. Since it is pos-
sible to have multiple constraints, and each constraint is equally important,
we chose to scale every constraint output with as c′ = c/(max(c) − min(c)),
where max(c) is the maximum constraint violation encountered so far, and
min(c) is the smallest constraint value seen so far. After scaling, the differ-
ence between min(c) and max(c) becomes 1, for all constraints, making every
constraint equally important while 0 remains the feasibility boundary.

Plog: In cases where there are very steep slopes, a logarithmic transformation
of the objective and/or constraint scores can be beneficial for the predictive
accuracy [23]. Therefore, we transform the scores with the Plog transforma-
tion function. The extension to a matrix argument Y is defined component-
wise, i.e., each matrix element yij is subject to Plog.

Plog(y) =

{
+ ln(1 + y), if y ≥ 0
− ln(1 − y), if y < 0

(5)

3.4 Maximize Hypervolume Contribution

After modelling the relationship between the input space and the response vari-
ables with the RBFs, the RBFs are used as cheap surrogates. For each constraint
and objective the best RBF configuration is chosen as described in Sect. 3.6. By
using Eq. (3) for each unseen input x′ every corresponding constraint and objec-
tive prediction can be calculated. The COBYLA (Constrained Optimization BY
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Linear Approximations) algorithm [22] is then used to search for a new feasible
Pareto-optimal solution x′ ∈ [lb,ub]. This is achieved by maximizing the hyper-
volume (HV) a solution x′ adds to the HV between a predefined reference point
and the already evaluated solutions on the PF (Line 26 of Algorithm 1). The
HV contribution of a solution to the PF is computed with two infill criteria:

1. Compute all objective scores for a given solution x′ with Eq. (3). Then with
the interpolated objective scores compute the additional Predicted HV (PHV)
score this solution adds to the PF.

2. Compute all objective scores for a given solution x′ with Eq. (3) and subtract
the uncertainty of each objective given x′ and Eq. (4), which is similar to the
Kriging S-metric Selection (SMS) criterion from Emmerich et al. [4].

Besides the highest possible SMS or PHV score, the potential solution should
not violate any of the constraints. This can easily be checked by using the RBF
surrogates of the constraints and Eq. (3). COBYLA then searches for a solution
which does not violate any of the constraints and has the highest SMS or PHV
score. If no feasible solution can be found, the solution with the smallest con-
straint violation is evaluated. The best candidate is then evaluated on the real
objective and constraint functions (Lines 27–31 of Algorithm 1).

3.5 Surrogate Exploration and RBF Adaptation Rules

The surrogate search budget and the number of starting points are updated and
optimized every iteration. This is done to limit the time spend on exploring the
surrogates and to further increase the chance of finding a solution that adds
the most HV to the PF. The problem characteristics (number of variables, con-
straints, and objectives) influences the optimization problem complexity. There-
fore, in the first iteration of SAMO-COBRA, the surrogate evaluation budget
and number of starting points are empirically chosen and set at 50 · (d + m + k)
and 2 · (d + m + k) respectively. In every iteration of SAMO-COBRA the con-
vergence of COBYLA is checked. If COBYLA converges every time to a feasible
solution, the number of randomly generated points is increased by 10% and the
surrogate search budget is decreased by 10%. The opposite update is done if
COBYLA did not converge from one of the starting points.

Because in the first iterations, the RBFs do not model the constraints very
well yet, an allowed error (ε) of 1% for each constraint is built in. If the solu-
tion, evaluated on the real constraint function, is feasible, the error margin of
this constraint approximation is reduced by 10%. If a solution is infeasible the
RBFs surrogate approximation is clearly still wrong, so the error margin of the
corresponding constraint is increased by 10%.

3.6 Select Best RBF

In every iteration, the best RBF kernel and transformation strategy is chosen
(Line 32 of Algorithm 1). This is done by computing the difference between the
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RBF interpolated solution and the solution computed with the real constraint
and objective functions. This difference is computed every iteration, resulting in
a list of historical RBF approximation errors for each constraint and objective
function, for each kernel, with and without the Plog transformation.

Based on the RBF approximation errors, the best RBF kernel and trans-
formation are chosen. Bagheri et al. show empirically that if only the last
approximation error is considered, in the single objective case, the algorithm
converged to the best solution faster [1]. This is the case because when closer
to the optimum, the vicinity of the last solution is the most important. In the
multi-objective case, the vicinities of all the feasible Pareto-optimal solutions are
important. We therefore experimented with this and confirmed that the approx-
imation errors of the feasible Pareto-optimal solutions and the last four solutions
should be considered. The approximation error of the last four solutions make
sure that the algorithm does not get stuck on one RBF configuration and the
error of the Pareto efficient solutions make sure that all the vicinity of the optimal
solutions are considered. The Mean Squared Error measure is used to quantify
which RBF kernel and which transformation function in the previous iterations
resulted in the smallest approximation error.

4 Experimental Setup

The SMS and PHV infill criteria in combination with the SAMO-COBRA algo-
rithm are tested on 18 constrained multi-objective test functions. The two vari-
ants of the algorithm are compared to CEGO [29], NSGA-II [10], and NSGA-
III [15]. Each algorithm is allowed to do 40 · d function evaluations after which
the HV between the PF and a fixed reference point is computed. The 18 test
functions with their sources, their dimensions, feasibility rate, and the aver-
age algorithm iteration times are presented in Table 1. The iteration times of
NSGA-II and NSGA-III are so low (∼0.001 s) that they are not reported. The
experiments are executed on a laptop with i7 processor, 4 cores and a clock speed
of 2.5 GHz.

In the experiment we ran the algorithms 10, 10, 10, 100, 100 times with
different seeds for the SAMO-COBRA (PHV), SAMO-COBRA (SMS), CEGO,
NSGA-II, and NSGA-III algorithm respectively. This number of runs is chosen
because the iteration time of SAMO-COBRA and CEGO are higher, and the
HV after 40 · d function evaluations vary a lot for NSGA-II and NSGA-III.

The implementation of the SMES-RBF algorithm is not provided. We there-
fore show in one additional experiment on GitHub [28], that SAMO-COBRA
requires fewer function evaluations to achieve the same HV as SMES-RBF [8].

4.1 Algorithm Parameter Settings

As already mentioned in Sect. 3.1, a small initial Design of Experiments (DoE)
leads to higher final HV. The SAMO-COBRA algorithm is therefore set up with
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Table 1. Test functions with citation, the reference points, the number of objectives k,
number of parameters d, number of constraints m, feasibility percentage P (%) based
on 1 million random samples, mean running time per iteration in seconds.

Function Reference point k d m P(%) SAMO-COBRA CEGO

BNH [7] (140, 50) 2 2 2 96.92 3.5 10.5

CEXP [9] (1, 9) 2 2 2 57.14 2.2 10.1

SRN [11] (301, 72) 2 2 2 16.18 4.9 20.6

TNK [11] (2, 2) 2 2 2 5.05 0.8 8.2

CTP1 [9] (1, 2) 2 2 2 92.67 0.8 7.3

C3DTLZ4 [26] (3, 3) 2 6 2 22.22 18.1 338

OSY [7,11] (0, 386) 2 6 6 2.78 9.8 424

TBTD [13] (0.1, 50000) 2 3 2 19.46 5.5 151

NBP [12] (11150, 12500) 2 2 5 41.34 2.8 9.7

DBD [13] (5, 50) 2 4 5 28.55 34.9 159

SPD [20] (16, 19000, −260000) 3 6 9 3.27 34.6 405

CSI [15] (42, 4.5, 13) 3 7 10 18.17 45.3 1h+

SRD [19] (7000, 1700) 2 7 10 96.92 63.2 172

WB [13] (350, 0.1) 2 4 5 35.28 19.1 258

BICOP1 [8] (9, 9) 2 10 1 100 24.2 1h+

BICOP2 [8] (70, 70) 2 10 2 10.55 12.1 1h+

TRIPCOP [8] (34, −4, 90) 3 2 3 15.85 3.8 9.6

WP [15] (83000, 1350, 2.85,
15989825, 25000)

5 3 7 92.06 16.1 225

d+1 initial Halton samples. The Kriging surrogates of CEGO require a minimum
DoE of size 2·d+1. CEGO therefore starts after a DoE of 2·d+1 Latin Hypercube
Samples. Other hyper-parameters of CEGO are set as originally described [29].

The implementation of Platypus [14] is used for NSGA-II and NSGA-III. The
algorithms have several sensitive parameters which influence the final results.
We therefore did a grid search for different population sizes and generations for
NSGA-II, and a grid search for the number of division that controls the spacing
of the reference points for NSGA-III. For the sake of brevity, only the results
which gave the highest HV after 40 · d function evaluations are reported.

For more detailed parameter settings, the raw results, and the statistical
comparisons, please refer to the SAMO-COBRA GitHub page [28].

5 Results

Table 2 shows the mean HV after 40 · d function evaluations. The Kruskal-
Wallis test confirmed that there is at least one result statistically different from
the results from the other algorithms, a post-hoc comparison is done with a
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Table 2. Mean HV after 40 · d function evaluations for each algorithm on each test
function. PHV and SMS represents the SAMO-COBRA variants. The highest mean HV
per test function are presented in bold. The Wilcoxon rank-sum test (with Bonferroni
correction) significance is represented with a grayscale. Background colors represent:

p ≤ 0.001, p ≤ 0.01 , p ≤ 0.05 . Red shows that the algorithm took more than 24 h.

Function PHV SMS CEGO NSGA-II NSGA-III

BNH 5256.0 5251.0 5218.0 5089.7 4848.8

CEXP 3.7968 3.7967 3.7658 3.1544 2.9561

SRN 62385 62377 62307 54233 52585

TNK 8.0430 8.0474 8.0309 6.4282 6.2948

CTP1 1.3026 1.3023 1.2972 1.1929 1.1864

C3DTLZ4 6.3016 6.4697 6.2664 5.2489 5.2500

OSY 100577 100458 100181 46631 42204

TBTD 4029.3 4027.5 4055.0 3421.5 3446.0

NBP 1.0785 · 108 1.0785 · 108 1.0784 · 108 9.8573 · 107 9.5816 · 107
DBD 228.77 228.34 227.85 218.47 218.33

SPD 3.8859 · 1010 3.7602 · 1010 3.4057 · 1010 2.6069 · 1010 2.5689 · 1010
CSI 27.800 25.167 terminated 17.296 16.993

SRD 4205165 4164992 4148333 2766367 2673599

WB 34.395 34.392 34.522 34.0270 33.995

BICOP1 80.664 78.160 terminated 67.6506 70.911

BICOP2 4834.33 4822.13 terminated 4816.12 4816.72

TRIPCOP 20610 20611 20609 20101 19982

WP 1.5991 · 1019 1.5698 · 1019 1.5350 · 1019 1.1623 · 1019 1.1797 · 1019

Wilcoxon rank-sum test (with Bonferroni correction) to find out if there is a
significant difference between the best and the lesser results.

Note that the exploiting strategy of the PHV infill criteria leads in most
cases to the highest hv after 40 · d function evaluations. It is no surprise that
this exploiting strategy works well in a constrained multi-objective setting since
a similar effect was already shown by Rehbach et al. [24]. He showed that in the
single objective case, it is only useful to include an expected improvement infill
criterion, if the dimensionality of the problem is low, if it is multimodal, and if
the algorithm can get stuck in a local optimum. With the results as presented
in Table 2 we can give an advice based on empirical results, as follows: When
searching for a set of Pareto-optimal solutions, an uncertainty quantification
method should not be used. This is due to the fact that, when searching for
a trade-off between objectives, the algorithm is forced to explore more of the
objective space in the different objectives, making it less likely to get stuck in a
local optimum, and making the uncertainty quantification method redundant.
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6 Conclusion and Future Work

In this paper the authors propose SAMO-COBRA, a fast optimization algo-
rithm capable of handling multiple objectives, multiple constraints, and contin-
uous decision variables. Two variants of the algorithm are evaluated and com-
pared to CEGO, NSGA-II, NSGA-III, and SMES-RBF. The experiments show
that SAMO-COBRA outperforms the other algorithms in terms of achieved
HV after a fixed number of function evaluations. These characteristics make
SAMO-COBRA a good choice when optimizing a real-world optimization prob-
lem with multiple objectives, multiple constraints, continuous decision variables,
and expensive (in terms of time and/or money) function evaluations.

Besides these results, the authors also give the recommendation that an
uncertainty quantification method in multi-objective optimization is often not
required. This is the case, because the algorithm already automatically explores
more of the objective space compared to when optimizing single objective prob-
lems, which makes the algorithm less likely to get stuck in a local optimum.

Further research efforts will be put into parallelizing the function evaluations
and parallelizing the surrogate exploration so that the wall clock time can be
further decreased. Besides parallelization, effort will be put into dealing with
mixed integer decision parameters and multi fidelity simulation software.
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