Skip to main content

Multi\(^3\): Optimizing Multimodal Single-Objective Continuous Problems in the Multi-objective Space by Means of Multiobjectivization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

In this work we examine the inner mechanisms of the recently developed sophisticated local search procedure SOMOGSA. This method solves multimodal single-objective continuous optimization problems by first expanding the problem with an additional objective (e.g., a sphere function) to the bi-objective space, and subsequently exploiting local structures and ridges of the resulting landscapes. Our study particularly focusses on the sensitivity of this multiobjectivization approach w.r.t. (i) the parametrization of the artificial second objective, as well as (ii) the position of the initial starting points in the search space.

As SOMOGSA is a modular framework for encapsulating local search, we integrate Gradient and Nelder-Mead local search (as optimizers in the respective module) and compare the performance of the resulting hybrid local search to their original single-objective counterparts. We show that the SOMOGSA framework can significantly boost local search by multiobjectivization. Combined with more sophisticated local search and metaheuristics this may help in solving highly multimodal optimization problems in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For two points \(a,b \in \mathbb {R}^m\) we state that a dominates b, if \(a_i \le b_i\) for all \(i \in \{1,\ldots , m\}\) and \(a_j<b_j\) for at least one \(j \in \{1,\ldots , m\}\). As a reminder, within this work, we only consider bi-objective problems, i.e., \(m = 2\).

  2. 2.

    LHS implementation of the pyDOE package: https://pythonhosted.org/pyDOE/.

References

  1. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 765–772 (2007)

    Google Scholar 

  2. Garza-Fabre, M., Toscano-Pulido, G., Rodriguez-Tello, E.: Multi-objectivization, fitness landscape transformation and search performance: a case of study on the HP model for protein structure prediction. Eur. J. Oper. Res. (EJOR) 243(2), 405–422 (2015)

    Article  MathSciNet  Google Scholar 

  3. Grimme, C., Kerschke, P., Emmerich, M.T.M., Preuss, M., Deutz, A.H., Trautmann, H.: Sliding to the global optimum: how to benefit from non-global optima in multimodal multi-objective optimization. In: AIP Conference Proceedings, pp. 020052-1–020052-4. AIP Publishing (2019)

    Google Scholar 

  4. Grimme, C., Kerschke, P., Trautmann, H.: Multimodality in multi-objective optimization – more boon than bane? In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 126–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_11

    Chapter  Google Scholar 

  5. Handl, J., Lovell, S.C., Knowles, J.: Multiobjectivization by decomposition of scalar cost functions. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_4

    Chapter  Google Scholar 

  6. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research Report RR-6829, INRIA (2009). https://hal.inria.fr/inria-00362633

  7. Hoffmeister, F., Bäck, T.: Genetic algorithms and evolution strategies: similarities and differences. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 455–469. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029787

    Chapter  Google Scholar 

  8. Jensen, M.T.: Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2004)

    Article  MathSciNet  Google Scholar 

  9. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, 8 January 1948 (1948)

    Google Scholar 

  10. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimization landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_23

    Chapter  Google Scholar 

  11. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., et al. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90

    Chapter  Google Scholar 

  12. Kerschke, P., et al.: Search dynamics on multimodal multi-objective problems. Evol. Comput. (ECJ) 27, 577–609 (2019)

    Article  Google Scholar 

  13. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_19

    Chapter  Google Scholar 

  14. Mckay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  16. Neumann, F., Wegener, I.: Can single-objective optimization profit from multiobjective optimization? In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multiobjective Problem Solving from Nature, pp. 115–130. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72964-8_6

  17. Preuss, M.: Summary and final remarks. Multimodal Optimization by Means of Evolutionary Algorithms. NCS, pp. 171–175. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07407-8_7

    Chapter  MATH  Google Scholar 

  18. Segura, C., Coello Coello, C.A., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for single-objective optimization. 4OR 11(3), 201–228 (2013)

    Google Scholar 

  19. Segura, C., Coello Coello, C.A., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization. Ann. Oper. Res. 240(1), 217–250 (2016)

    Article  MathSciNet  Google Scholar 

  20. Steinhoff, V., Kerschke, P., Aspar, P., Trautmann, H., Grimme, C.: Multiobjectivization of local search: single-objective optimization benefits from multi-objective gradient descent. In: Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI) (2020). (accepted for publication, preprint available on arXiv: https://arxiv.org/abs/2010.01004)

  21. Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the noiseless BBOB testbed. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO) Companion, pp. 1217–1224. ACM (2013)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge support by the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pelin Aspar , Pascal Kerschke , Vera Steinhoff , Heike Trautmann or Christian Grimme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., Grimme, C. (2021). Multi\(^3\): Optimizing Multimodal Single-Objective Continuous Problems in the Multi-objective Space by Means of Multiobjectivization. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics