Skip to main content

Using Neighborhood-Based Density Measures for Multimodal Multi-objective Optimization

  • Conference paper
  • First Online:
Book cover Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

This paper is about a new approach for dealing with Multimodal Multi-objective Optimization Problems (MMOPs). The major challenge in such problems is to discover several equivalent solutions in the decision space which map to the same values in the objective space. Therefore, it is very important to additionally consider the diversity of the solutions in the decision space which is the goal of this paper. We introduce a new algorithm called NxEMMO which is based on a neighborhood-based density measure in the decision space. We have evaluated our proposed approach on a 14 test problems with 2 to 6 decision variables and 2 and 3 objective functions. The experimental analysis confirms the improvement of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_4

    Chapter  MATH  Google Scholar 

  4. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)

    Article  MathSciNet  Google Scholar 

  5. Huang, V., Suganthan, P., Qin, A., Baskar, S.: Multiobjective differential evolution with external archive and harmonic distance-based diversity measure, pp. 1–25 (2005)

    Google Scholar 

  6. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  7. Javadi, M., Ramirez-Atencia, C., Mostaghim, S.: Combining Manhattan and crowding distances in decision space for multimodal multi-objective optimization problems. In: Gaspar-Cunha, A., Periaux, J., Giannakoglou, K.C., Gauger, N.R., Quagliarella, D., Greiner, D. (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. CMAS, vol. 55, pp. 131–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57422-2_9

    Chapter  Google Scholar 

  8. Javadi, M., Ramirez-Atencia, C., Mostaghim, S.: A novel grid-based crowding distance for multimodal multi-objective optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  9. Javadi, M., Zille, H., Mostaghim, S.: The effects of crowding distance and mutation in multimodal and multi-objective optimization problems. In: Gaspar-Cunha, A., Periaux, J., Giannakoglou, K.C., Gauger, N.R., Quagliarella, D., Greiner, D. (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. CMAS, vol. 55, pp. 115–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57422-2_8

    Chapter  Google Scholar 

  10. Kerschke, P., Preuss, M.: Exploratory landscape analysis. In: GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, pp. 1137–1155 (2019)

    Google Scholar 

  11. Kumar, K., Deb, K.: Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multiobjective problems. Complex Syst. 9, 431–454 (1995)

    Google Scholar 

  12. Liang, D., Qu, B., Gong, D., Yue, C.: Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. In: Computational Intelligence Laboratory, Zhengzhou University (2019)

    Google Scholar 

  13. Liang, J., Guo, Q., Yue, C., Qu, B., Yu, K.: A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10941, pp. 550–560. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93815-8_52

    Chapter  Google Scholar 

  14. Liang, J., Yue, C., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2454–2461. IEEE (2016)

    Google Scholar 

  15. Lin, Q., Lin, W., Zhu, Z., Gong, M., Li, J., Coello, C.: Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces. IEEE Trans. Evol. Comput. 1–1 (2020)

    Google Scholar 

  16. Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_21

    Chapter  Google Scholar 

  17. Optimization, M.m.M.o., Pal, M., Bandyopadhyay, S.: Decomposition in decision and objective space for multi-modal multi-objective optimization. arXiv preprint arXiv:2006.02628 (2020)

  18. Peng, Y., Ishibuchi, H.: A decomposition-based large-scale multi-modal multi-objective optimization algorithm. arXiv preprint arXiv:2004.09838 (2020)

  19. Peng, Y., Ishibuchi, H., Shang, K.: Multi-modal multi-objective optimization: problem analysis and case studies. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1865–1872. IEEE (2019)

    Google Scholar 

  20. Sengupta, R., Pal, M., Saha, S., Bandyopadhyay, S.: NAEMO: neighborhood-sensitive archived evolutionary many-objective optimization algorithm. Swarm Evol. Comput. 46, 201–218 (2019)

    Article  Google Scholar 

  21. Tanabe, R., Ishibuchi, H.: A niching indicator-based multi-modal many-objective optimizer. Swarm Evol. Comput. 49, 134–146 (2019)

    Article  Google Scholar 

  22. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2018)

    Article  Google Scholar 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  24. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahrokh Javadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Javadi, M., Mostaghim, S. (2021). Using Neighborhood-Based Density Measures for Multimodal Multi-objective Optimization. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics