Skip to main content

Population Sizing of Evolutionary Large-Scale Multiobjective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

Large-scale multiobjective optimization problems (LSMOPs) are emerging and widely existed in real-world applications, which involve a large number of decision variables and multiple conflicting objectives. Evolutionary algorithms (EAs) are naturally suitable for multiobjective optimization due to their population-based property, allowing the search of optima simultaneously. Nevertheless, LSMOPs are challenging for conventional EAs, mainly due to the huge volume of search space in LSMOPs. Thus, it is important to explore the impact of the population sizing on the performance of conventional multiobjective EAs (MOEAs) in solving LSMOPs. In this work, we compare several representative MOEAs with different settings of population sizes on some transformer ratio error estimation (TREE) problems in the power system. These test cases are defined on combinations of three population sizes, three TREE problems, and five MOEAs. Our results indicate that the performances of conventional MOEAs with different population sizes in solving LSMOPs are different. The impact of population sizing is most significant for differential evolution based and particle swarm based MOEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshari, H., Hare, W., Tesfamariam, S.: Constrained multi-objective optimization algorithms: review and comparison with application in reinforced concrete structures. Appl. Soft Comput. 83, 105631 (2019)

    Article  Google Scholar 

  2. Antonio, L.M., Coello Coello, C.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: Proceedings of 2013 IEEE Congress on Evolutionary Computation, pp. 2758–2765 (2013)

    Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  4. Chen, H., Cheng, R., Wen, J., Li, H., Weng, J.: Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations. Inf. Sci. 509, 457–469 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cheng, H., Ran, C., Ye, T., Xingyi, Z.: Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: IEEE Congress on Evolutionary Computation (CEC 2020). IEEE (2020)

    Google Scholar 

  6. Cheng, R.: Nature inspired optimization of large problems. Ph.D. thesis, University of Surrey (2016)

    Google Scholar 

  7. Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2015)

    Article  Google Scholar 

  8. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47, 4108–4121 (2017)

    Article  Google Scholar 

  9. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2001), pp. 283–290. Citeseer (2001)

    Google Scholar 

  10. De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 38–47. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029729

    Chapter  Google Scholar 

  11. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(4), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Advanced Information and Knowledge Processing. Springer, London (2005)

    Google Scholar 

  14. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 26, 30–45 (1996)

    Google Scholar 

  15. He, C., Cheng, R., Danial, Y.: Adaptive offspring generation for evolutionary large-scale multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.3003926

  16. He, C., Cheng, R., Tian, Y., Zhang, X.: Iterated problem reformulation for evolutionary large-scale multiobjective optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  17. He, C., Cheng, R., Zhang, C., Tian, Y., Chen, Q., Yao, X.: Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers. IEEE Trans. Evol. Comput. 24(5), 868–881 (2020)

    Article  Google Scholar 

  18. He, C., et al.: Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans. Evol. Comput. 23(6), 949–961 (2019)

    Article  Google Scholar 

  19. He, C., Tian, Y., Jin, Y., Zhang, X., Pan, L.: A radial space division based many-objective optimization evolutionary algorithm. Appl. Soft Comput. 61, 603–621 (2017)

    Article  Google Scholar 

  20. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 1758–1763. IEEE (2009)

    Google Scholar 

  21. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450. IEEE (2005)

    Google Scholar 

  22. Lechuga, M., Coello, E.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, Part of the 2002 IEEE World Congress on Computational Intelligence, pp. 2051–11056 (2002)

    Google Scholar 

  23. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18, 450–455 (2014)

    Article  Google Scholar 

  24. Loshchilov, I., Schoenauer, M., Sebag, M.: Dominance-based Pareto-surrogate for multi-objective optimization. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 230–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17298-4_24

    Chapter  Google Scholar 

  25. Ma, X., et al.: A multiobjective evolutionary algorithm based on decision variable analyses for multi-objective optimization problems with large scale variables. IEEE Trans. Evol. Comput. 20, 275–298 (2016)

    Article  Google Scholar 

  26. Pan, A., Wang, L., Guo, W.: A universal strengthened searching module for multi-objective optimization based on variable properties. Appl. Soft Comput. 91, 106199 (2020)

    Article  Google Scholar 

  27. Pruvost, G., Derbel, B., Liefooghe, A., Li, K., Zhang, Q.: On the combined impact of population size and sub-problem selection in MOEA/D. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 131–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_9

    Chapter  Google Scholar 

  28. Roeva, O., Fidanova, S., Paprzycki, M.: Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 580, pp. 107–120. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12631-9_7

    Chapter  Google Scholar 

  29. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)

    Article  Google Scholar 

  30. Shen, X., Guo, Y., Li, A.: Cooperative coevolution with an improved resource allocation for large-scale multi-objective software project scheduling. Appl. Soft Comput. 88, 106059 (2020)

    Article  Google Scholar 

  31. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12, 73–87 (2017)

    Article  Google Scholar 

  32. Tian, Y., Zhang, X., Wang, C., Jin, Y.: An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans. Evol. Comput. 24(2), 380–393 (2019)

    Article  Google Scholar 

  33. Wang, G., Jiang, H.: Fuzzy-dominance and its application in evolutionary many objective optimization. In: Proceedings of the 2007 International Conference on Computational Intelligence and Security Workshops, pp. 195–198. IEEE (2007)

    Google Scholar 

  34. Wang, H., Yao, X.: Corner sort for Pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)

    Article  Google Scholar 

  35. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10, 29–38 (2006)

    Article  Google Scholar 

  36. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  38. Zhang, X., Tian, Y., Jin, Y., Cheng, R.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22, 97–112 (2016)

    Article  Google Scholar 

  39. Zhang, X., Zheng, X., Cheng, R., Qiu, J., Jin, Y.: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 427, 63–76 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multi-objective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22, 260–275 (2018)

    Article  Google Scholar 

  41. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  42. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Rep. 103 (2001)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant 61903178 and Grant 61906081; in part by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant 2017ZT07X386; in part by the Shenzhen Peacock Plan under Grant KQTD2016112514355531; and in part by the Program for University Key Laboratory of Guangdong Province under Grant 2017KSYS008.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Cheng, R. (2021). Population Sizing of Evolutionary Large-Scale Multiobjective Optimization. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics