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Abstract Hyper-heuristic frameworks, although intended to be cross-domain at the
highest level, usually rely on a set of domain-specific low-level heuristics which
exist below the domain-barrier and are manipulated by the hyper-heuristic itself.
However, for some domains, the number of available heuristics can be very low,
while for novel problems, no heuristics might exist at all. We address this issue by
describing two general methods for the automated production of constructive and
perturbative low-level heuristics. Grammatical evolution is used to evolve low-level
heuristics that operate on an ‘intermediate” graph-based representation built over
partial permutations. As the same grammar can be applied to multiple application
domains, assuming they follow this representation, the grammar can be viewed as
cross-domain. The method is evaluated on two domains to indicate generality (the
Travelling Salesman Problem and Multidimensional Knapsack Problem). Empirical
results indicate that the approach can generate both constructive and perturbative
heuristics that outperform well-known heuristic methods in a number of cases and
are competitive with specialised methods for some instances.

1 Introduction

Hyper-heuristics, “heuristics to choose heuristics”, were first introduced in an at-
tempt to raise the generality at which search methodologies operate [4], searching
over the space of solvers rather than solutions (as in typical meta-heuristics). Their
development was motivated by a desire to produce a method that was cheaper to
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implement and easier to use than problem-specific, customised methods, while pro-
ducing solutions of acceptable quality to an end-user in an appropriate time-frame.
Specifically, it aimed to address a concern that the practical impact of search-based
optimisation techniques in commercial and industrial organisations had not been
as great as might have been expected, due to the prevalence of problem-specific
or knowledge-intensive techniques, which were inaccessible to the non-expert or
expensive to implement.

The canonical hyper-heuristic framework introduces a domain-barrier that sep-
arates a general algorithm to choose heuristics from a set of low-level heuristics
that are specific to a domain, i.e. a particular application class of problem such as
bin-packing, or vehicle-routing. The over-riding idea is that switching domains only
requires a change in the set of low-level heuristics, with no change to the control-
ling high-level hyper-heuristic. Clearly, the success of the high-level heuristic is
strongly influenced by the number and the quality of the low-level heuristics avail-
able. Low-level heuristics incorporating problem-specific knowledge are often de-
signed by hand, relying on intuition or human-expertise [4]. In general, they are also
tied to a specific problem-representation, given that they either modify an existing
solution (in the case of perturbative heuristics) or create a solution from scratch (in
the case of constructive heuristics). Therefore, it is unlikely that low-level heuristics
from one domain transfer well (or at all) to another. As a result, when tackling a
new domain, a new low-level heuristic set for the domain must be created. This can
be often supplied by experts, or in cases where no heuristics are available, it has
been shown that new heuristics can be evolved, for example using genetic program-
ming (GP) [2]. However, the latter approach requires an in-depth understanding of
a domain in order to select appropriate function and terminal nodes that can be used
by the genetic programming algorithm to evolve a heuristic. As such, although at
conceptual level, GP can be used to evolve heuristics for any domain, it has to be
individually customised to a domain each time it is used.

For new problem domains that do not map well to well-studied domains in the lit-
erature, developing an appropriate set of low-level heuristics remains a challenging
problem. In this study, we aim to address this challenge by introducing a method
of creating new heuristics that is cross-domain in the sense that the generating
method can be used without modification to create heuristics in multiple domains;
the heuristics created as a result however are specialised to an individual domain. In
other words, we describe a cross-domain generation method of generating domain-
specific heuristics.

A cross-domain generation approach must necessarily utilise a common prob-
lem representation. We adopt a graph-based representation as it enables a broad
spectrum of practical problems to be represented. While this includes obvious ap-
plications such as routing and scheduling [26] which have natural representations
as graphs, it can also be applied in many less obvious ones including packing prob-
lems [22] and utility maximisation in complex negotiations[24] through appropriate
manipulation.

We describe two approaches that use grammatical-evolution to generate low-
level heuristics for any domain that is represented in graph-form. Each method can
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be used without modification to generate heuristics for multiple domains. The first
approach generates constructive heuristics while the second uses a modified version
of the grammar to generate perturbative heuristics. The research lays the foundation
for a paradigm shift in designing heuristics for combinatorial optimisation domains
in which no heuristics currently exist, or those domains in which hyper-heuristic
methods would benefit from additional low-level heuristics. The approach signifi-
cantly reduces the burden on human experts, as it only requires that the problem can
be represented as a graph, with no further specialisation, and does not require a large
database of training examples. The method is not expected to compete with domain-
specific approaches that have been customised to the idiosyncrasies of a given do-
main; rather it is intended as a straightforward way of creating new heuristics that
have acceptable performance when no other heuristics are available and the expert
knowledge need to create them is lacking. The vast majority of hyper-heuristic re-
search is focused on generating algorithms that operate above the domain-barrier
— in keeping with the original philosophy of creating generalised methods. In con-
trast, our approach operates “under” the domain-barrier. However, in keeping with
the spirit of hyper-heuristics, our approach is also generalisable, in being able to
create low-level heuristics for a diverse range of domains.

The article provides brings together research previously described in detail in
[29, 30]. It provides a synthesised overview of the previous work, while providing
some examples of results selected from the original papers to illustrate the salient
points. The reader is referred to the original papers for more complete results and
more detailed description of the methods.

2 Related Work

While the majority of initial work in the field of hyper-heuristics focused on devel-
opment of the high-level controlling heuristics[4], more recent attention has focused
on the role of the low-level heuristics themselves. Low-level heuristics fall into two
categories [4]. Constructive heuristics build a solution from scratch, adding an el-
ement at a time, e.g. [26] and have been applied in a variety of domains such as
personnel scheduling, job-shop problem [31], education timetabling [23] and pack-
ing [27]. On the other hand, perturbative heuristics modify an existing solution, e.g.
re-ordering elements in a permutation [7] or modifying genes [4].

Typical methods to generate constructive heuristics include Genetic Program-
ming (GP) [16] and Grammatical Evolution (GE)[20]. GP constructs trees that, for
example, output a number representing an item priority, e.g. for vehicle routing
[26], job-shop scheduling [12], TSP [14]. GE is a form of grammar based genetic
programming developed for the automatic generation of programs. Differently from
GP, it does not apply the evolutionary process directly to a program but on a variable
length genome. A mapping process then turns the genome into a program by follow-
ing grammar rules specified using Backus Naur Form [20]. This approach ensures
the creation of syntactically correct programs that then are executed and their fit-
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ness function evaluated. GE has already been applied to construct heuristics for the
capacitated vehicle routing problem and for the bin packing problem [25]. With re-
spect to generation of perturbative heuristics, GP approaches are also common, e.g.
for generating novel local search heuristics for satisfiability testing [4]. Grammati-
cal Evolution was applied to evolve new local-search heuristics for 1d-bin packing
in [4, 18].

Despite some success in the areas just described, we note that in each case, the
function and terminal nodes used in GP or the grammar specification in GE are
specifically tailored to a single domain. While clearly specialisation is likely to be
beneficial, it can require significant expertise and investment in algorithm design.
For a practitioner, such knowledge is unlikely to be available, and for new domains,
this may be time-consuming even for an expert. Therefore, we are motivated to
design a general-purpose method that is capable — without modification — of pro-
ducing heuristics in multiple domains. While we do not expect such a generator
to compete with specialised heuristics or meta-heuristics, we evaluate whether the
approach can be used as a “quick and dirty” method of generating a heuristic that
produces an acceptable quality solution in multiple domains.

3 Evaluation Domains and their representation as graphs

In the proposed system we encode all the properties of the problems into a graph
embedded in some arbitrary space. Whenever possible, we convert properties into
some spatial concept to which we can associate some arbitrary metric. We select
two evaluation domains. The first is the Travelling Salesman Problem (TSP) [17],
one of the most studied problems in combinatorial optimisation, in which a tour
passing through exactly n points once must be minimised. Due to the fact that it
is naturally encoded as an ordering problem represented by a graph in which the
cities to visit can be trivially encoded as vertices in 2-D Euclidean space it provides
a straightforward baseline for our experiments. The second domain chosen is the
Multidimensional Knapsack Problem (MKP). This is also well studied with appli-
cations in budgeting, packing and cutting problems. In the typical version, the profit
from items selected among a collection must be maximised while respecting the
constraints of a knapsack. In contrast to TSP, knapsack solvers do not typically use
a graph-based representation of the problem [6]. However, it can be re-represented
in a graph-based formulation as follows.

Assume there is one vertex corresponding to each object, and one vertex for
the knapsack. The properties of the vertex can be interpreted as coordinates that
determine the location of the vertices in some constraint-profit space. A geometric
interpretation of the problem can be intuitively described as follows: when an object
is chosen (connected to the knapsack vertex) the properties of the object are added
to the knapsack and it is moved in the constraint-profit space. The amount of motion
is equal to the values of the object’s vector in constraint space and in the direction
of the profit space. The configuration of objects connected to the knapsack that
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move the knapsack the furthest in profit space without the knapsack crossing the
line corresponding to its maximum capacity in any of its constraint dimensions is
the best configuration. An example with just one constraint (weight) is drawn in Fig.
1.

Fig. 1: Geometric interpretation of the knapsack problem simplified to two dimen-
sions (weight constraint and profit). On the left the knapsack at initialisation has
0 weight and 0 profit. As objects are connected to the knapsack it is moved of an
amount equivalent to the vectors defined by the sum of the objects.

4 Using Grammatical Evolution to evolve low-level heuristics

Grammatical Evolution [19], is a population based approach developing a pro-
gram through manipulating an integer string (the genotype) which is subsequently
mapped to a program (or similar) through the use of a grammar. Given a gram-
mar defined in Backus Naur Form (BNF) containing a terminal Set < T >, a non-
terminal set < N > and a set of production rules < P >, and a start point, an integer
sequence can be used to specify a program (a function) by selecting production rules
and their expansions (see[19] for a full description). The role of the evolutionary
process is then to search the space of integers to find a suitable program.

Here we use the PonyGE31 Python implementation of GE [10] to evolve gram-
mars that create constructive and perturbative heuristics. This uses a linear genome
representation encoding a list of integers (codons). The mapping between the geno-
type and the phenotype is actuated by the use of the modulus operator on the value of

1 https://github.com/PonyGE/PonyGE2
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the codon, i.e. Selected node = c mod n, where c is the integer value of the codon
to be mapped and n is the number of options available in the specific production
rule. Offspring are created through one-point crossover followed by mutation that
substitutes a single randomly selected codon with a new, randomly chosen value.
A generational replacement strategy with elitism of size 1. To evolve constructive
heuristics, we use a grammar rich in geometric operations that allows a heuristic to
make a choice at each step based on measures over the graph. To evolve perturba-
tive heuristics, we use a grammar that performs three operations: cuts, inversions
and permutations. These are described in detail below.

4.1 Evolving Constructive Heuristics

To evolve a new constructive heuristic that builds a solution from scratch, GE is used
to evolve a ranking function that ranks candidate vertices. The ranking function
is iteratively applied to select the next vertex to be added to the partial solution.
Assuming there are n available vertices for a domain, then in the TSP case, exactly
k = n vertices must be selected, while in the knapsack domain, k<n are selected.

In the case of a TSP solution, each successive vertex defines the next city to visit.
In the case of MKP, each successive vertex of the chain is used to select the next
item to be placed in the knapsack as shown in figure 2.

Fig. 2: Constructing a solution for the MKP. Blue node is the knapsack. Green node
is the last appended vertex
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The set of production rules used is given in figure 3. Definitions of the terminal
nodes used to define nodes can be found in [28]. Note the same grammar is used to
generate constructive heuristics for both the TSP and Knapsack domains.

Fig. 3: Complete grammar for generation of constructive heuristics

4.2 Evolving Perturbative Heuristics

In this case, we use GE to evolve a Python program that takes a sequence (i.e a
permutation) as an input and returns a modified version of the same sequence (per-
mutation) with the same length. The production rules of the grammar are shown in
figure 4. As above, the PonyGE2 implementation is used to evolve a program, which
in this case modifies an existing solution. Definitions of the terminal nodes used in
the production rules can be found in [?].

The operator constructed by the grammar can be thought of as a form of k-opt
[13] that is configurable and includes extra functions that determine where to break
a sequence. However, the formulation and implementation is vertex centric rather
than edge centric. The mechanics of the algorithm are as follows:

Number of cuts: This determines in how many places a sequence will be cut
creating (k−1) subsequences where k is the number of cuts. The number of possible
loci of the cuts is equal to n+1, where n is the number of vertices (the sequence can
be cut both before the first element and after the last element).

Location of cuts: The grammar associates a strategy to each cut that will deter-
mine the location of the specific cut. A strategy may contain a reference location
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Fig. 4: Complete grammar for generation of perturbative heuristics

such as the ends of the sequence or subsequence, a specific place in the sequences
or a random location. The reference can be used together with a probability dis-
tribution that determines the chances of any given location to be the place of the
next cut. These probability distributions de facto regulate the length of each subse-
quence. Two probability distributions can be selected by the grammar: a discretised
triangular distribution and a negative binomial distribution. An example can be seen
in fig.5-A and 5-B.

After the cutting phase the subsequences are given symbols with S being always
the leftmost subsequence and E being the rightmost subsequence such as in fig. 5-C.
The start and end sequences (S,E) are never altered by the evolved operator which
only acts on the sequences labelled α-β in fig. 5-C. Note that subsequences may be
empty. This can happen if the leftmost cut is on the left of the first element (leaving
S empty), if the rightmost cut is after the last element (leaving E empty) or if two
different cuts are applied in the same place.

Permutation of the subsequence: After cutting the sequence the subsequences
becomes the units of a new sequence. The grammar can specify if the subsequence
will be reordered to a specific permutation (including the identity, i.e no change) or
to a random permutation. An example can be seen in 6-a.

5 Methodology

We conduct experiments in the two domains described above. An experiment con-
sists of two phases: a training phase in which GE is used to evolve a heuristic on
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Fig. 5: A) Example of a sequence with one cut and a probability mass function
that will decide the loci of the second cut. B) Both cuts now shown C) Final set of
subsequences after k-cuts

(a) Subsequence permutation (b) Subsequence inversion

Fig. 6: Example perturbations of the subsequences produced by the grammar

small training set of randomly generated instances. This is followed by a test phase
in which heuristics evolved from multiple runs of the GE algorithm are evaluated
on a test set of benchmark instances taken from the literature. The next two sections
describe the procedures by which the training data is generated for both constructive
and perturbative approaches, and provide the details of the experimental set up in
each case.
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5.1 Training Phase

A set of 10 random instances is synthesised in order to train the heuristic generator
in each case. The reader is referred to [29, 30] for an exact description of each
synthesiser and the associated parameters in each domain, however a brief outline
is repeated here.

For TSP, a set of instances each containing n cities are generated using a uniform-
random distribution on a 2D plane. For MKP, instances have m objects with k con-
straints each. Each constraint is a sample from a uniform random distribution with
a specified range o. The profits of each object are taken from a normal distribution
with mean equal to the sum of the constraints and fixed standard deviation sdp. The
constraints of the knapsack are sampled from a normal distribution2 with mean c
and standard deviation sdc.

During evolution of constructive heuristics, the fitness of a heuristic on the train-
ing set in both domains is calculated as the median fitness returned from the set
of training instances. When evolving perturbative heuristics, the fitness evaluation
consists of applying the heuristics as the move-operator within a hill-climbing algo-
rithm to each of the training instances starting from an randomly initialised solution.
The hill-climber runs for x iterations with an improvement only acceptance criteria.
The fitness at the end-point is averaged over the 5 instances and assigned to the
heuristic.

All experiments are repeated in each domain 10 times, with a new set of training
instances generated for each run. All parameters of the PonyGE algorithm to evolve
the heuristics using the specified grammars can be found in [29, 30]. The best per-
forming heuristic from each run is retained, creating an ensemble of 10 heuristics as
a result to be used in the test phase.

5.2 Test Phase

For the purposes of evaluating the evolved heuristics, we select an indicative set of
benchmarks from the each domain. The evolved heuristics are compared to well-
known approaches from the literature in each case. The work in [29, 30] provides
extensive evaluation results over large numbers of benchmarks. In this chapter for
clarity we select representative results for presentation.

In the TSP domain, we provide results on 5 benchmarks instances taken from the
TSPLib3. In the case of constructive heuristics, we compare results to the known
optimal, as well as two well known constructive heuristics from the literature, the
nearest-neighbour heuristic [17] and the MST heuristic [17]. Both these heuristics
are deterministic. For evaluation of the perturbative heuristics, we use the same

2 We recognise that real-instances are unlikely to be uniformly distributed: our implementation
therefore represents the worst-case scenario in which the system can be evolved
3 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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instances and compare to the best known perturbative heuristic 2-opt [8], using the
R TSPLIB implementation4. As this is a stochastic method, it is repeated 50 times.

In the MKP domain, constructive heuristics are compared to a greedy depth
first search algorithm [15] which also constructs solutions. As the vast majority
of published results in this domain use meta-heuristic approaches, there are no ob-
vious heuristic methods to use a comparison, Therefore we compare with two meta-
heuristic approaches from [5], the Chaotic Binary Particle Swarm Optimisation with
Time Varying Acceleration Coefficient (CBPSO), and an improved version of this
algorithm that includes a self-adaptive check and repair operator (SACRO CBPSO),
the most recent and highest-performing methods in MKP optimisation. Both al-
gorithms use problem specific knowledge: a penalty function in the former, and a
utility ratio estimation function in the latter, with a binary representation for their
solution. Both are allocated a considerably larger evaluation budget than our ex-
periments. The heuristics evolved using our approach would not be expected to
outperform these approaches — however, we wish to investigate whether the ap-
proach can produce solutions within reasonable range of known optima that would
be acceptable to a practitioner requiring a quick solution.

In all testing experiments, the 10 heuristics in the ensemble created in the train-
ing phase are applied to each test instance. In the constructive case, each heuristic is
applied once to each test instance to construct a solution. In the perturbative domain,
each of the 10 evolved heuristics are applied 5 times to a randomly initialised so-
lution using an improvement only acceptance criteria (hill-climber). We record the
average performance of each heuristic over 5 runs, as well as the best, and the worst.
These values were selected following a minimal amount of empirical investigation,
motivated by the desire to develop a system that could quickly generate a set of new
heuristics (hence choice of a small ensemble), and to quickly provide a reasonable
estimate of heuristic fitness (hence a small number of replications).

6 Results

We present the results first for the experiments in which constructive heuristics were
evolved, followed by those for the evolution of perturbative heuristics. Recall from
above that two grammars are specified, one for constructive heuristics and one for
perturbative heuristics. The constructive grammar is used without modification to
generate heuristics for two distinct domains (TSP and MKP). Similarly, the pertur-
bative grammar is also used without modification in both domains.

4 https://cran.r-project.org/web/packages/TSP/TSP.pdf
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6.1 Constructive Heuristics

The results in table 1 show a comparison of the best, worse and median fitness of
the evolved heuristics on each of the TSP test instances. As explained above, these
are compared to the deterministic values obtained from a single run of the human
designed heuristics. The best evolved heuristic is better than both human heuristics
in all 5 cases, while in 3 out of 5 instances the median performance of the evolved
heuristics is better than both the simple human heuristics.

The results for the MKP tests are show in table 2 which compares the perfor-
mance of the evolved heuristics to a greedy constructive heuristic (run 10 times),
where the heuristic try to fit each object in the knapsack if there is sufficient space
using a different ordering each time and to random construction. The best of evolved
heuristics outperforms the greedy (deterministic) heuristic in 4 out of 7 instances. It
is also of note that in 2 cases, the global optima is obtained by the best heuristics.
The worst performing evolved heuristics outperform the greedy heuristic in 3 out
of 7 instances. Statistical analysis using a Wilcoxon rank test fails to reject the null
hypothesis that constructiveGE produces the same results as the greedy construction
method at a significance level of 0.05 for all instances.

Instance name Optima NN MST constructive-GE

Median Best Worst

berlin52 7542 8868 10404 9196 8452 10515
ch130 6110 7575 8277 7501 6942 8469
eil101 629 826 846 803 736 897
eil51 426 521 605 547 451 620
eil76 538 700 739 652 603 678

Table 1: Results obtained from generating reusable constructive heuristics for the
TSP domain

Instance optima rand greedy constructive-GE
worst median best worst median best worst median best

mknap1-1 3800 100 1700 3100 1200 2700 3800 1800 3300 3800
mknap1-2 8706.1 1482.1 5059 8687.5 4340.7 6504.8 8650.1 4212.4 7059.8 8706.1
mknap1-3 4015 985 2235 2860 1895 3325 3765 2390 2480 3725
mknap1-4 6120 1320 3240 5820 2460 3525 5390 2480 3020 5640
mknap1-5 12400 3770 7770 10340 7590 8990 11550 6855 8150 10510
mknap1-6 10618 4286 6566 9770 7400 8032 10345 7238 7641 9352
mknap1-7 16537 5661 9509 12769 8770 12363 15330 8335 10887 15668

Table 2: Results obtained from generating reusable constructive heuristics for the
MKP domain
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7 Results: Perturbative Heuristics

Table 3 shows the best, worst and median performance of the evolved heuristics and
the two-opt based algorithm for TSP. The median result obtained by the evolved
heuristic improved on 2-opt in each case, with the evolved heuristics finding the best
single result on 4 out of 5 instances. A Wilcoxon Rank-sum test applied to compare
the two treatments on each instance enables us to reject the null-hypothesis in each
case, i.e improvements are statistically significant at the 5% level.

In table 4 we present results in the MKP instances. The table compares the Aver-
age Success Rate (ASR) across all instances grouped by dataset against the results
presented by [5] on 2 versions of SACRO algorithms and an additional fish-swarm
method. The results given in the table are taken directly from this paper. In [5], ASR
is calculated as the number of times the global optima was found for each instance
divided by the number of trials. For perturbativeGE, we define a trial as successful if
at least one of the 10 heuristics found the optima in the trial, and repeat this 5 times.
Despite the fact that the our new perturbative heuristics have no domain-specific
information and are simplistic compared to the specialised metaheuristic methods
we compare to, it can be seen that the results are comparable to those of specialised
algorithms. In fact, perturbativeGE outperforms the specialised methods on Weing
dataset.

perturbativeGE 2-opt Rank sum p-valueBest Worst Median Best Worst Median
berlin52 7793 8825 8170 7741 9388 8310 0.0033
ch130 6418 7108 6722 6488 7444 6984 0.0030
eil101 674 739 702 680 749 709 0.0073
eil51 435 484 456 442 494 473 � 0.001
eil76 563 616 593 583 628 611 � 0.001

Table 3: Results obtained from generating perturbative heuristics for use in the TSP
domain.

Problem Set Instances Average Success Rate
IbAFSA BPSOTVAC CBPSOTVAC perturbativeGE

Sento 2 1.000 0.9100 0.9100 0.90
Weing 8 0.7875 0.7825 0.7838 0.80
Weish 30 0.9844 0.9450 0.9520 0.907

Hp 2 0.9833 0.8000 0.8600 1.00
Pb 6 1.000 0.9617 0.9517 0.967
Pet 6 na na na 1.00

Table 4: Comparison of results obtained from the perturbative GE algorithm with
the latest specialised meta-heuristics from the literature: a fish-swarm algorithm
IbAFSA and the two most recent SACRO algorithms, results taken directly from
[5]. na indicates that no results were provided in [5] on this dataset
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8 Discussion

In this article, we set out a method of tackling the issue of generating new low-
level heuristics that could be used across the domain-barrier in a hyper-heuristic.
Unlike previous approaches to low-level heuristic generation that are customised to
a particular domain, the results presented above show that a single grammar can be
used to generate heuristics for two different domains, without modification. 5. This
is made possible by assuming a common representation of a problem, in this case
as a graph. While this may appear somewhat restrictive, it is clear that many prac-
tical problems can be represented in this form. In fact several renowned industrial
applications have used graph representations such as Google’s page rank algorithm
[21], Amazon and Netflix recommendation system[3], Drug Discovery [1], General
Electric’s power distribution system[9] and GSM mobile phone network frequency
assignment[11].

Motivated by the general challenge of designing heuristics for new domains in
which few examples of instances are available, we trained the two heuristic gener-
ators (one for constructive heuristics, one for perturbative heuristics) on very small
training sets containing randomly synthesised instances. Despite this, the evolved
heuristics are shown to capable of outperforming well-known simple heuristics on
many benchmark instances in the TSP domain and find comparable results to spe-
cialised meta-heuristics in the MKP domain. Therefore, it is reasonable to consider
the method cross-domain for the set of problem domains that can be represented in
graph form. The grammar used to evolve the heuristics is exclusively composed of
geometric properties and functions that are not tied to any specific problem domain,
and we only implement graph-manipulation techniques. Figure 7 shows examples
of a constructive heuristic evolved in each of the two domains that returns a priority
for each vertex (with the highest priority vertex then being added to the solution).
The heuristics exploit geometric properties of the graphs. For instance, in the MKP
domain, the cosine distance appears in 97% of evolved heuristics with the Euclidean
distance measure only appearing in 17%: in contrast, in TSP, the Euclidean distance
metric appears in 100% of evolved heuristics, with the cosine metric only appearing
in 12%.

Clearly, there remains considerable scope for training using much larger instance
sets, or non-random instances. In this respect, our results are representative of the
worst-case performance of the system. As noted at the start, the motivation behind
the research is not to develop heuristics that outperform very specialised methods
— there will always be a trade-off between specialist and generalist heuristics in
terms of performance. However, to be useful, the heuristics should have acceptable
performance. The results presented clearly demonstrate that this is the case.

5 note that different grammars are required depending on whether one wishes to generate construc-
tive or perturbative heuristics
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a) psqrt(distance_to_v0(vertex,’cosine’))-
sin(plog(exp(distance_osms(vertex,’cosine’))))

b)distance_osms(vertex,’euclidean’)-
exp(cos(distance_to_v0(vertex,’euclidean’)))

Fig. 7: Examples of evolved constructive heuristics for a) MKP and b) TSP domain.
Each heuristic returns a priority for a vertex; the vertex with the highest priority is
chosen. For example the MKP heuristic is interpreted as ‘The priority of the current
vertex is equal to: the root of the cosine distance between the current vertex and the
container vertex minus the sine of the distance between the last vertex of the chain
and the current vertex’ etc.

9 Conclusion

The article has presented a method that demonstrates it is possible to go below the
hyper-heuristic domain-barrier and use a cross-domain grammar, without modifica-
tion, to generate new heuristics for each of two separate domains. The generation
method is cross-domain, while the heuristics it produces are specialised to each
individual domain considered. The article synthesises previous work which was re-
ported in [29, 30] where expanded results and analysis can found. Given that a
graph-based representation enables a rich and diverse set of application domains
to be represented, the approach augments existing hyper-heuristic methods, partic-
ularly in being able to provide a source of low-level heuristics for new types of
problem classes for which low-level heuristics are unavailable. Importantly, it re-
moves the need for expertise in either heuristic design or the domain itself. While
of course domain-expertise will result in the creation of high-quality heuristics, we
have demonstrated that in fact our approach is able to generate high-performing
heuristics that are comparable to (and occasionally better than) existing methods.

Many improvements are possible to the method itself. This includes expanding
the components of the grammar that currently uses only a fraction of the possible
geometric information derivable from a graph, and extensive tuning of the parame-
ters of the approach. The ability to generate new heuristics for a domain also opens
up the ability of improving existing hyper-heuristic methods that operate above the
domain-barrier by extending the set of heuristics available for selection.
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Automatic iterated greedy design for the permutation flow-shop problem with weighted tar-
diness. In: International Conference on Learning and Intelligent Optimization, pp. 321–334.
Springer (2013)

19. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computa-
tion 5(4), 349–358 (2001)

20. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an
Arbitrary Language. Springer (2003). DOI 10.1007/978-1-4615-0447-4 4

21. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order
to the web. (1999). URL http://ilpubs.stanford.edu:8090/422

22. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms
Appl. 13(2), 233–249 (2009)

23. Pillay, N., Banzhaf, W.: A study of heuristic combinations for hyper-heuristic systems for the
uncapacitated examination timetabling problem. European Journal of Operational Research
197(2), 482–491 (2009)
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