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Abstract. Patient motion during the magnetic resonance imaging (MRI)
acquisition process results in motion artifacts, which limits the ability of
radiologists to provide a quantitative assessment of a condition visu-
alized. Often times, radiologists either “see through” the artifacts with
reduced diagnostic confidence, or the MR scans are rejected and patients
are asked to be recalled and re-scanned. Presently, there are many pub-
lished approaches that focus on MRI artifact detection and correction.
However, the key question of the bias exhibited by these algorithms on
motion corrupted MRI images is still unanswered. In this paper, we seek
to quantify the bias in terms of the impact that different levels of motion
artifacts have on the performance of neural networks engaged in a le-
sion segmentation task. Additionally, we explore the effect of a different
learning strategy, curriculum learning, on the segmentation performance.
Our results suggest that a network trained using curriculum learning is
effective at compensating for different levels of motion artifacts, and im-
proved the segmentation performance by ∼9%-15% (p < 0.05) when
compared against a conventional shuffled learning strategy on the same
motion data. Within each motion category, it either improved or main-
tained the dice score. To the best of our knowledge, we are the first to
quantitatively assess the segmentation bias on various levels of motion
artifacts present in a brain MRI image.
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1 Introduction

Gliomas are a family of neoplasms of the brain that includes the devastating and
most common tumor of the brain, glioblastoma [1,2,3,4]. The most aggressive
types of gliomas associated with low patient survival rates are the high grade
gliomas (HGG), such as glioblastoma, which are extremely infiltrative, spreading
extensively through surrounding tissue. Surgery usually focuses on areas of high-
est grade and debulking of tumor to improve short term symptoms and quality
of life [1,4]. Magnetic Resonance Imaging (MRI) is the standard approach to
diagnose and follow gliomas [2] particularly over the course of their manage-
ment. Unfortunately, imaging of gliomas, and HGG in particular, is limited by
their varied and similar appearance to other neoplasms, irregular shapes, and
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heterogeneous histologic grade throughout their volume making it difficult to
characterize and quantify [4,5,6,7,8,9,10]. Different contrasts, such as T1, T1
with contrast (T1ce), T2, and Fluid Attenuation Inversion Recovery (FLAIR),
are usually acquired to visualize the tissue properties and the extent of the tumor
[4]. Furthermore, varying MRI scanners and exam protocols are used at differ-
ent institutions to acquire these scans [4,6]. Given the morbidity surrounding
HGGs, there is increasing interest in quantitatively describing these lesions by
identifying and segmenting the tumor and its sub-components in MRI images.

Further confounding analysis is patient motion, the predominant source of
image degradation in clinical practice affecting 10%-42% of brain exams [12,17].
Degradation of the MR images can potentially be identified at the time of exam,
but this would require almost 20% of all MR exams to be repeated [12]. In some
cases, the entire MR exam can be rejected and the patient will need to be recalled
and re-scanned, resulting in tremendous financial and time costs to the health-
care provider [12]. Moreover, radiologists usually attempt to “see-through” [17]
motion artifacts to diagnose the underlying condition, but if the quality of the
MR image is severely corrupted, the accurate localization of the tumor boundary
is hindered. Many techniques have been proposed in a plethora of prior work to
segment brain MR images [4], but convolutional neural network approaches are
the state of the art in this domain [4,5,6,7,8,9,10,11]. Similarly, many schemes
have also been proposed for prospective or retrospective [13,14,15,16] motion cor-
rection. Deep learning-based approaches for motion correction [17,18,19,20,21]
have also shown promise in improving the image quality. Some approaches have
enabled the segmentation performance of a network to improve post-correction
[21]. We focus on the deep learning approaches in this paper.

The Multimodal Brain Tumor Segmentation Challenge [4] has been predom-
inantly used by prior deep learning algorithms, and it provides a dataset of
multi-sequence, pre- and post-operative, HGG and low grade gliomas (LGG),
neuroradiologist-segmented brain MRIs. These prior lesion segmentation meth-
ods utilize all available MR sequences (e.g. T1, T2, T1ce, FLAIR), but in clinical
practice, radiologists focus on the slices through the mass of a few sequences
(e.g. T1ce or FLAIR) for sizing of the tumor and refer to other sequences for
confirmation. Prior research has shown that the addition of a small amount of
Gaussian noise to the training data degraded the segmentation performance of
the top performing models from the BraTS challenge by 10%-15% [10]. Attempts
to make robust motion insensitive models have augmented the training set with
images that incorporate simulated motion [7,21]. But, they do not quantify the
algorithmic performance across different severities of motion corruption: mini-
mal, mild, moderate, severe. Thus, the impact and segmentation performance
relative to the spectrum of motion artifacts is not characterized.

In this paper, we assess the bias caused by a gamut of simulated motion on
the segmentation performance (in terms of dice score) of neural networks using
the BraTS 2019 dataset. We use five previously published neural networks - UNet
with Attention [26], UNet 2.5D [21], LSTM UNet [27], LSTM ResNet34 [28], and
LSTM CorNet [29] and quantify their segmentation bias. We focus on the task of
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HGG segmentation in only T1ce sequences affected by different levels of motion
corruption. We postulate that a curriculum learning [23,7] strategy, wherein
an easier task (minimal) is first learned followed by progressively harder tasks
(mild, moderate, severe), helps these networks converge faster and improves their
segmentation performance. The intent is to evaluate and quantify segmentation
performance of these algorithms relative to the severity of motion artifact, and
show that an alternative learning strategy improves performance.
Contribution. 1) For a lesion segmentation task, we characterize the bias
caused by different levels of motion artifacts on the segmentation performance
of neural networks. 2) We propose a curriculum learning strategy as a way to
overcome this bias and improve the segmentation performance.

2 Methods

Data. In this study, the 2019 Brain Tumor Segmentation challenge [4] dataset
was used for experimentation. The dataset is split into training, validation, and
testing sets. The training set contains 259 HGG and 76 LGG subjects whose cor-
responding ground truth labels were provided. The ground truth masks include
four labels: 1 - necrotic (NCR) and non-enhancing (NET) tumor, 2 - edema (ED),
4 - enhancing tumor (ET), and 0 - normal tissue and background. Each case con-
tained four MRI sequences: T1-weighted, T1-weighted contrast-enhanced (T1ce),
T2-weighted and FLAIR. The cases were pre-processed before segmentation, in-
cluding co-registration to an anatomical template, interpolation to an isotropic
resolution (1mm3) and skull stripping. The resulting sequences had dimensions
of 240 × 240 × 155 pixels. In this study, we focus on the tumor core (labels 1
and 4) of the T1ce sequence, which is crucial to clinical tumor size estimation.
Motion Simulation. The BraTS dataset is not representative of a real clinical
scenario where data is often limited, noisy, and labels are sparse or incorrect [10].
To mimic a real clinical setting, we utilized only the 259 HGG T1ce sequences
from subjects in the training set, and divided them into four motion categories:
minimal (64), mild (64), moderate (64), and severe (67). In each motion cat-
egory, we further subdivided the data into train/validation/testing splits. For
the first three motion categories, each split contained 38/6/20 cases, while the
split for the severe motion category contained 40/6/21 cases. To study the bias
introduced by motion, artifacts were simulated on T1ce sequences assuming a
rigid body translation and rotation model as shown in Fig. 2. The severity of the
artifact depended heavily on the timing and amplitude of the movement during
MRI signal sampling. Motion was artificially introduced in the frequency domain
(k-space): 1) Minimal (no changes to 64 cases), 2) Mild (± 2px translation/±
1◦ rotation applied on 64 cases), 3) Moderate (± 3px translation/± 2◦ rotation
applied on 64 cases), 4) Severe (± 4px translation/± 3◦ rotation applied on 67
cases). The motion corrupted k-space data can be considered a linear combina-
tion of two versions of k-space: (1) k-space before motion and (2) k-space after
simulated motion event (rotation, translation). When the combined k-space data
was converted back as images, varying degrees of simulated motion artifact were
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evident. To more closely approximate the visual appearance of motion artifact
seen in the clinical setting, a simulated skull was added back to the skull-stripped
data which produced the typical ringing, blurring and ghosting appearances.

(a) Minimal (b) Mild (c) Moderate (d) Severe

Fig. 1: Qualitative results of the five different networks on images from test
datasets in the (a) minimal, (b) mild, (c) moderate and (d) severe motion cate-
gories respectively. The second and third rows show the segmentation results of
the networks trained with the shuffled learning and curriculum learning strate-
gies respectively. Magenta: ground truth label, Yellow: UNet Attention, Green:
UNet 2.5D, Cyan: LSTM UNet, Orange: LSTM ResNet, Brown: LSTM CorNet.

Baseline Comparisons. Currently, radiologists center their tumor sizing ef-
forts over a few slices in particular sequences (e.g. T1ce or FLAIR) and refer
to the other sequences for confirmation. As prior work has been focused on vol-
umetric brain lesion segmentation, we paid attention to other popular models
that utilized either 1- or 3- slice(s) for segmenting the lesion. We extend the
prior work by testing the performance of five previously proposed neural net-
works: 1) UNet with attention [26], 2) UNet 2.5D [21], 3) LSTM UNet [27], 4)
LSTM ResNet34 [28], and 5) LSTM CorNet [29]. These network architectures
follow the basic encoder-decoder design [25]. UNet with attention [26] used at-
tention gates to identify salient image regions and suppress noisy responses. The
LSTM-based networks [27,28,29] incorporated a convLSTM decoder structure
and other modifications, such as residual [30] and dilated convolutions [31] etc.,
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Fig. 2: Simulation of rigid body translation and rotation on T1ce images are
shown. (a) Original T1ce, (b) T1ce with synthetic skull, (c) Combined k-space
signal of unaffected k-space (blue) and motion corrupted k-space (yellow). Ex-
ample motion trajectories are plotted as a function of k-space profile number.
(d) T1ce with four levels of simulated motion artifacts: minimal, mild, moderate
and severe. The motion simulation was applied only to the T1ce images, and the
underlying ground truth labels were left unchanged.

to exploit the extracted contextual features. The UNet 2.5D [21] used three T1ce
slices as the network input, while the other networks used a single T1ce slice.
Learning Strategy. Prior work on MR image segmentation has utilized a shuf-
fled learning strategy during training that relied on randomly presenting an
individual case to the network from the training set [4,5,6,9,10]. Within the con-
text of motion corruption, this strategy does not account for the varying degrees
of motion severity. Instead of a randomly shuffled dataset order, a curriculum-
based strategy [23,32] was used in this work to present the network with easier
datasets (e.g. minimal) first, and gradually feeding it with data of increasing
motion severity (mild, moderate, severe). Only the order of datasets presented
to the network was changed, and the time complexity of learning remained the
same as with shuffled learning.

3 Experiments

Design. We quantitatively evaluated the lesion segmentation performance of
each network using the BraTS 2019 data. The first experiment computed the
upper limit of performance by using the networks to segment sequences without
artifacts or simulated skull (blue bar in Fig. 3). Second, the networks were trained
and tested on data where the skull was simulated (gold bar in Fig. 3). Third,
the networks that were trained on artifact-free data containing the simulated
skull were tested on artifact simulated data with the skull (green bar in Fig. 3).
Fourth, the networks were trained on data containing the simulated skull and
motion artifacts, and tested on data containing the skull and motion artifacts
(orange bar in Fig. 3). In the aforementioned experiments, a shuffled learning
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strategy was used, i.e., all the training data fed to the network were shuffled
with no regard to the motion severity. In the last experiment, a curriculum
learning strategy was introduced during training time; datasets were fed to the
networks during training in the order of increasing motion severity i.e., minimal,
mild, moderate, severe. The training data contained both the simulated skull
and motion artifacts, and the networks were tested on data containing the skull
and motion artifacts (pink bar in Fig. 3).

Pre-processing. Each image in the training sequence was normalized [6,7,10]
by subtracting its mean value and dividing by its standard deviation of the
intensities within the brain region. After normalization, the images were padded
to 256×256 pixels for training the network.

Data Augmentation. In addition to the motion simulation, heavy data aug-
mentation was conducted in the form of flipping (horizontal and vertical), gamma
adjustment, Gaussian noise addition, Gaussian blurring, Median blurring, Bilat-
eral blurring, cropping, and affine transformations.

Training. A grid search across the parameter space was conducted for each
network on a 4× sub-sampled dataset to identify the best hyper-parameters
given the input data. We trained each network for 30 epochs with the training
being terminated early if the validation loss did not improve for 7 epochs. The
networks were trained with the dice loss [28] as it has been experimentally proven
to be less sensitive to the class imbalance problem. In most cases, grid search
yielded chosen parameters that were the same as those proposed in the original
papers with the exception of the batch size, which varied from 4-16 T1ce images
per batch. The reader is referred to the original papers for full implementation
details. The ADAM optimizer [33] was used for optimizing the loss function, and
the final pixel level probabilities were classified using the softmax function. All
experiments were run on a workstation running Ubuntu 16.04LTS, a NVIDIA
Titan Xp GPU, and the average inference time on a test slice was 44.7ms for
UNet Attention, 49.1ms for UNet 2.5D, 58.8ms for LSTM UNet, 86.3ms for
LSTM ResNet34, and 96.2ms for LSTM CorNet.

Post-processing. In contrast to the prior approaches, no post-processing was
done on the predicted segmentation masks. The predicted labels were directly
compared against the ground truth masks, and the dice score was computed.

4 Results and Discussion

Results across all motion categories. As seen in Fig. 1, qualitative results are
presented for all the models on test dataset images organized by motion category.
Shuffled learning tends to under-segment the tumor (false negatives) and in some
cases generates false positives, contributing to a lower dice score. The spread of
the dice scores across the test datasets for the five networks are presented in Fig.
3, and the associated mean and standard deviations of the dice scores are listed
in Table 1. From the experimental designs in Sec. 3, these networks have been
trained with different learning strategies and data categories. Table 2 lists the p-
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values from statistical analysis using ANOVA that was conducted on dice scores
between different learning strategies and motion categories for each network.

(a) (b)

(c) (d) (e)

Fig. 3: Each plot displays the spread of the dice scores obtained using different
learning strategies and data collections across all the testing set for the (a) UNet
with attention model, (b) UNet 2.5D model, (c) LSTM UNet model, (d) LSTM
ResNet34 model, (e) LSTM CorNet model.

From Fig. 3, adding the simulated skull to the data did not change the seg-
mentation performance when compared against data without the skull across
the neural networks (blue vs gold bars, p>0.05). However, the performance de-
graded significantly when a network trained with the shuffled learning strategy
and clean data was tested on motion data (gold vs green bars, p<<0.05); e.g., the
dice scores of the UNet Attention network dropped by >12% when the network
trained on clean data was tested on motion corrupted data. This observation
holds true across the four other networks, as shown in Table 1 and Fig. 3. Also
consistent with prior work [21], a 23% mean improvement in performance across
all networks was seen with incorporating motion data during training. Fig. 3
also demonstrates that curriculum learning compensates for the motion corrup-
tion. From Table 1, the results indicate that the curriculum learning strategy
provided a 9%-15% improvement when compared against the shuffled learning
strategy on the same motion data (orange vs pink bars, p < 0.05). Across all
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five neural networks, the resulting segmentations from curriculum learning were
comparable to the corresponding cases where the networks were trained on clean
data (gold vs pink bars, p > 0.05) as seen from the dice scores in Table 1 and
p-values in Table 2 (last row).
Results for each motion category. Fig. 4 shows the performance of networks
trained with different learning strategies on the individual motion categories.
For each network, the dice scores of networks trained with a shuffled learning
strategy on clean data are also shown for reference. Table 3 shows the statistical
significance of the two learning strategies on each motion category; following a
test of normality, either a paired t-test or the Wilcoxon signed rank test was
used. Fig. 5 depicts the training loss and the validation loss as a function of
epochs for the UNet Attention network: (a) shuffled learning strategy on clean
data, (b) shuffled learning strategy on motion data, and (c) curriculum learning
strategy on motion data. In contrast to the shuffled learning, curriculum learning
exhibits a relatively stable convergence rate with a lower loss. Other observations
that were made for each motion category include:

– UNet Attention: From Fig. 4(a) and Table 3, curriculum learning improved
the segmentation performance across motion categories (p < 0.05).

– UNet 2.5D: From Fig. 4(b) and Table 3, curriculum learning improved
the dice score significantly for the minimal, moderate and severe category
(p < 0.05). No significant difference was found between the two learning
strategies for the mild motion category (p = 0.257). Curriculum learning
either improved or maintained the segmentation performance by yielding
higher or comparable dice scores.

– LSTM UNet: As seen in Table 3, curriculum learning improved the seg-
mentation performance across all motion categories, except for mild motion.
However, it resulted in lower standard deviations in the mild category in
contrast to shuffled learning as shown in Fig. 4(c).

– LSTM ResNet34: As seen in Fig. 4(d) and Table 3, significantly higher dice
scores were obtained with curriculum learning for minimal and severe motion
categories (p < 0.05), but there is no statistically significant difference with
the other motion groups. Curriculum learning did provide comparable dice
scores in the mild motion category, and a higher mean dice score and a lower
standard deviation in the moderate category.

– LSTM CorNet: Curriculum learning improved the segmentation perfor-
mance across all motion categories as shown in Fig. 4(e) and Table 3.

Discussion. From Fig. 3 and Tables 1 and 2, when contrasted against curricu-
lum learning, shuffled learning on motion corrupted data resulted in significantly
inferior segmentation performance. Potential reasons include an unbalanced set
of data for training (64 cases without added motion; 195 cases with added mo-
tion), and weight oscillation during training. From Fig. 5, curriculum learning
overcame the weight oscillations [23] with the data being fed to a network in the
order of increasing motion corruption. Overall, the curriculum learning strategy
helped to improve the segmentation dice score for all the neural networks that
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Table 1: Comparison of the dice score for each neural network trained with
different learning strategies and data collections.

UNet Attention UNet 2.5D LSTM UNet LSTM ResNet34 LSTM CorNet

Shuffled noSkull Clean 0.67 ± 0.1 0.67 ± 0.1 0.65 ± 0.09 0.66 ± 0.1 0.65 ± 0.09

Shuffled Skull Clean 0.66 ± 0.12 0.7 ± 0.1 0.67 ± 0.09 0.69 ± 0.09 0.64 ± 0.12

Shuffled Skull CleanOnMotion 0.55 ± 0.16 0.4 ± 0.24 0.46 ± 0.22 0.48 ± 0.17 0.46 ± 0.14

Shuffled Skull Motion 0.58 ± 0.13 0.58 ± 0.17 0.54 ± 0.16 0.62 ± 0.15 0.56 ± 0.17

Curriculum Skull Motion 0.67 ± 0.1 0.67 ± 0.1 0.64 ± 0.1 0.68 ± 0.09 0.63 ± 0.11

Table 2: Statistical significance of networks trained with different learning strate-
gies across all motion categories at a 5% significance level.
s = shuffled, c = curriculum, S = Skull, C = Clean, M = Motion, n = no

UNet Attention UNet 2.5D LSTM UNet LSTM ResNet34 LSTM CorNet

snSC vs. sSC 0.665 0.068 0.211 0.058 0.724

sSC vs. sSM 0.0001 0.0001 0.0007 0.001 0.001

sSM vs. cSM 0.0001 0.0001 0.0001 0.001 0.004

sSC vs. cSM 0.525 0.125 0.059 0.688 0.508

Table 3: Statistical comparison of the learning strategies (shuffled vs. curriculum)
used for training different networks on each motion category with α = 0.05.

UNet Attention UNet 2.5D LSTM UNet LSTM ResNet34 LSTM CorNet

Minimal 0.0005 4.91e-5 0.0002 71e-5 0.0029

Mild 8.81e-6 0.257 0.232 0.473 0.0012

Moderate 8.41e-8 0.007 0.003 0.056 0.0045

Severe 6.81e-5 0.012 6.81e-5 0.038 0.0003

were tested. An in-depth analysis suggested that curriculum learning either im-
proved or maintained the segmentation dice score across the different motion
categories for all the networks. While the least improvements in dice scores were
seen with the mild motion category, improvements were visualized in the other
(minimal, moderate and severe) motion categories across all the networks tested.
Our results suggest that the curriculum learning is most beneficial to the UNet
with Attention model.

In general, there is a tendency of curriculum learning to overestimate the
volume of the mass as illustrated in Fig. 1. While a T1ce image was corrupted by
simulating motion using rotations, translations, blurring, and ringing artifacts,
the underlying ground truth label was not altered in the same way; due to MR
physics, applying the same motion simulation to the ground truth label would not
ascertain a 1-1 correspondence with the image. Thus, there was a slight mismatch
between the motion corrupted image and its corresponding ground truth label.
As a network is fed these images during training and minimizes the dice loss
function, it has to consider the label mismatch. Therefore, it accounted for the
motion and over-segmented the lesion by generating false positives, such that the
predicted labels are slightly larger than the underlying ground truth. This caused
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(a) (b) (c) (d) (e)

Fig. 4: Dice scores for the (a) UNet with attention, (b) UNet 2.5D, (c) LSTM
UNet, (d) LSTM ResNet34, (e) LSTM CorNet across the various motion cat-
egories. The first two error bars show the shuffled learning strategy trained
with/without motion corrupted data respectively, and the last error bar displays
the curriculum learning strategy trained with motion corrupted data. Curricu-
lum learning either enhanced or maintained the segmentation performance across
the different motion categories.

a drop in the dice scores. Moreover, the dice scores from our study are not as high
as those from the BraTS challenge studies, possibly due to training being done
on a single image contrast with only 1/3 slice(s). Furthermore, no additional
post-processing methods were performed to rectify the predicted segmentation,
which has been shown to significantly enhance the dice scores [4,5,6,7,8,9,10]. We
would like to point out that the main purpose of this paper was not to achieve
the highest segmentation performance. Instead, these results help to quantify the
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(a) (b) (c)

Fig. 5: Comparison of the training loss (red) and validation loss (blue) for the
UNet architecture with attention mechanism with (a) shuffled learning strategy
on clean data, (b) shuffled learning strategy on motion data, and (c) curriculum
learning strategy on motion data.

effects of motion corruption, which is commonly encountered in clinical imaging,
on the segmentation performance of a variety of common deep learning models.

Our observation suggests that for a network trained on motion corrupted
data for the task of lesion segmentation and not motion correction, it might be
necessary to shrink the prediction while interpreting clinical cases. Potentially,
conventional image analysis techniques could be used to erode the labels further
down to the lesion margin. While human vision is different and may be tem-
pered by a variety of other information than just the pixels on the screen, our
work provides some insight into the effect of motion artifacts on the radiolo-
gist interpretations of lesion size. 3D volumetric techniques have been shown to
more accurately assess changes in glioblastoma [34], but it is rarely performed
due to the cumbersome segmentation process and limited tools. Furthermore,
as radiologists size lesions often over the course of a busy clinical day, there is
a need for accurate 2D/2.5D automated segmentation techniques. If automated
techniques are to be applied to generate volumetric measurements of lesions, our
results show that models will need adequate experience with motion corrupted
data. Since motion is an ubiquitous issue in clinical imaging, it will also behoove
those analyzing model performance to ensure that results are robust to motion
artifacts, or at least identify it as a factor and fail gracefully.

5 Conclusion and Future Work

Volumetric assessment of neoplasms are more accurate and clinically relevant.
However, in a busy clinical practice, this is rarely performed due to limited
tools and the tedious mass segmentation process. Automated tools can fill this
need, but they need to be robust to the commonplace artifacts degrading clini-
cal imaging, such as the ubiquitous motion artifact. In this paper, we analyzed
the performance of neural networks tasked with segmenting lesions in motion
corrupted brain MRI images, and quantified the bias exhibited by them on in-
dividual motion categories. We also explored a different learning strategy in
curriculum learning, and demonstrated that it is effective in compensating for
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the effects of simulated motion. It either improved or maintained the segmenta-
tion performance across all five networks and four motion severity categories. To
the best of our knowledge, this is the first quantitative assessment of segmenta-
tion bias from motion artifacts on brain MRI tumor measurement. In the future,
we plan to correct for the motion and segment the MR image in a multi-task
fashion, and explore curriculum learning further with bootstrapping.
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