Skip to main content

MRI Brain Tumor Segmentation Using a 2D-3D U-Net Ensemble

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Included in the following conference series:

Abstract

Three 2D networks, one for each patient-plane (axial, sagittal and coronal) plus a 3-D network were ensemble for tumor segmentation over MRI images, with final Dice scores of 0.75 for the enhancing tumor (ET), 0.81 whole tumor (WT) and 0.78 for tumor core (TC). A survival prediction model was design on Matlab, based on features extracted from the automatic segmentation. Gross tumor size and location seem to play a major role on survival prediction. A final accuracy of 0.617 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  6. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, pp. 234–241. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. arXiv arXiv:1606.04797 (2016)

  8. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. arXiv arXiv:1211.5063 (2013)

  9. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 Encoder pre-trained on imagenet for image segmentation. arXiv arXiv:1801.05746 (2018)

  10. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848.

  11. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, Long Beach, California, USA, 09–15 Jun 2019, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  12. Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. arXiv:1809.06839 (2018)

  13. Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. arXiv:1904.10030 (2019)

  14. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  15. A 3D multi-modal medical image segmentation library in PyTorch. https://github.com/black0017/MedicalZooPytorch

  16. Hermans, J., Spanakis, G., Möckel, R.: Accumulated gradient normalization (2017)

    Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  18. Swanson, K.R., Rostomily, R.C., Alvord, E.C.: A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br. J. Cancer 98, 113–119 (2008)

    Article  Google Scholar 

  19. Swanson, K.R., Bridge, C., Murray, J.D., Ellsworth, C., Alvord Jr., E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)

    Article  Google Scholar 

  20. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017). https://doi.org/10.1038/nrclinonc.2017.141. Epub 2017 Oct 4 PMID: 28975929

    Article  Google Scholar 

  21. Zhou, J., et al.: Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI. BMC Cancer 20(1), 100 (2020). https://doi.org/10.1186/s12885-020-6523-2.PMID:32024483;PMCID:PMC7003343

    Article  Google Scholar 

  22. Wu, J., Tha, K.K., Xing, L., Li, R.: Radiomics and radiogenomics for precision radiotherapy. J. Radiat. Res. 59(suppl_1), i25–i31 (2018). https://doi.org/10.1093/jrr/rrx102. PMID: 29385618; PMCID: PMC5868194.

  23. Jeong, J., Ali, A., Liu, T., Mao, H., Curran, W.J., Yang, X.: Radiomics in cancer radiotherapy: a review. arXiv:1910.02102v2 (2019)

  24. Awad, A.-W., et al.: Impact of removed tumor volume and location on patient outcome in glioblastoma. J. Neurooncol. 135(1), 161–171 (2017). https://doi.org/10.1007/s11060-017-2562-1

    Article  MathSciNet  Google Scholar 

  25. Lewandowski, Z., Beyenal, H.: Fundamentals of Biofilm Research. CRC Press (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundación HM, under the grant “Beca intramural 2018”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Marti Asenjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marti Asenjo, J., Martinez-Larraz SolĂ­s, A. (2021). MRI Brain Tumor Segmentation Using a 2D-3D U-Net Ensemble. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics