Skip to main content

Lightweight U-Nets for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

Automated brain tumor segmentation is a vital topic due to its clinical applications. We propose to exploit a lightweight U-Net-based deep architecture called Skinny for this taskā€”it was originally employed for skin detection from color images, and benefits from a wider spatial context. We train multiple Skinny networks over all image planes (axial, coronal, and sagittal), and form an ensemble containing such models. The experiments showed that our approach allows us to obtain accurate brain tumor delineation from multi-modal magnetic resonance images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our team is named ttarasiewicz.

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 1ā€“13 (2017). https://doi.org/10.1038/sdata.2017.117

    ArticleĀ  Google ScholarĀ 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629

  5. Bauer, S., Seiler, C., Bardyn, T., Buechler, P., Reyes, M.: Atlas-based segmentation of brain tumor images using a Markov random field-based tumor growth model and non-rigid registration. In: Proceedings of the IEEE EMBC, pp. 4080ā€“4083 (2010)

    Google ScholarĀ 

  6. Bontempi, D., Benini, S., Signoroni, A., Svanera, M., Muckli, L.: Cerebrum: a fast and fully-volumetric convolutional encoder-decoder for weakly-supervised segmentation of brain structures from out-of-the-scanner MRI. Med. Image Anal. 62, 101688 (2020)

    ArticleĀ  Google ScholarĀ 

  7. Bousselham, A., Bouattane, O., Youss, M., Raihani, A.: Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. Int. J. Biomed. Imaging 2019, 1758948 (2019)

    ArticleĀ  Google ScholarĀ 

  8. Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst. Appl. 38(5), 4998ā€“5004 (2011)

    ArticleĀ  Google ScholarĀ 

  9. Chowdhary, C.L., Acharjya, D.: Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput. Sci. 167, 26ā€“36 (2020)

    ArticleĀ  Google ScholarĀ 

  10. Estienne, T., et al.: Deep learning-based concurrent brain registration and tumor segmentation. Front. Comput. Neurosci. 14, 17 (2020)

    ArticleĀ  Google ScholarĀ 

  11. Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57(2), 378ā€“390 (2011)

    ArticleĀ  Google ScholarĀ 

  12. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516ā€“524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    ChapterĀ  Google ScholarĀ 

  13. Hasan, S.M.K., Ahmad, M.: Two-step verification of brain tumor segmentation using watershed-matching algorithm. Brain Inform. 5(2), 8 (2018)

    ArticleĀ  Google ScholarĀ 

  14. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234ā€“244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    ChapterĀ  Google ScholarĀ 

  15. Ji, S., Wei, B., Yu, Z., Yang, G., Yin, Y.: A new multistage medical segmentation method based on superpixel and fuzzy clustering. Comput. Math. Methods Med. 2014, 747549:1ā€“747549:13 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  16. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450ā€“462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    ChapterĀ  Google ScholarĀ 

  17. Korfiatis, P., Kline, T.L., Erickson, B.J.: Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomogr. J. Imaging Res. 2(4), 334ā€“340 (2016)

    Google ScholarĀ 

  18. Ladgham, A., Torkhani, G., Sakly, A., Mtibaa, A.: Modified support vector machines for MR brain images recognition. In: Proceedings of the CoDIT, pp. 032ā€“035 (2013)

    Google ScholarĀ 

  19. Meier, R., et al.: Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci. Rep. 6(1), 23376 (2016)

    ArticleĀ  Google ScholarĀ 

  20. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993ā€“2024 (2015)

    ArticleĀ  Google ScholarĀ 

  21. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Isgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252ā€“1261 (2016)

    ArticleĀ  Google ScholarĀ 

  22. Moradi, R., Berangi, R., Minaei, B.: A survey of regularization strategies for deep models. Artif. Intell. Rev. 53(6), 3947ā€“3986 (2020). https://doi.org/10.1007/s10462-019-09784-7

    ArticleĀ  Google ScholarĀ 

  23. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311ā€“320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    ChapterĀ  Google ScholarĀ 

  24. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    ArticleĀ  Google ScholarĀ 

  25. Nalepa, J., et al.: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Med. 102, 101769 (2020)

    ArticleĀ  Google ScholarĀ 

  26. Ortiz, A., GĆ³rriz, J.M., RamĆ­rez, J., Salas-Gonzalez, D.: MRI brain image segmentation with supervised SOM and probability-based clustering method. In: Proceedings of the IWINAC, pp. 49ā€“58 (2011)

    Google ScholarĀ 

  27. Ouchicha, C., Ammor, O., Meknassi, M.: Unsupervised brain tumor segmentation from magnetic resonance images. In: Proceedings of the IEEE WINCOM, pp. 1ā€“5 (2019)

    Google ScholarĀ 

  28. Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M.L.D., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with high-level features. In: Proceedings of the IEEE EMBC, pp. 3037ā€“3040 (2015)

    Google ScholarĀ 

  29. Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101, 494ā€“512 (2014)

    ArticleĀ  Google ScholarĀ 

  30. Saha, S., Bandyopadhyay, S.: MRI brain image segmentation by fuzzy symmetry based genetic clustering technique. In: Proceedings of the IEEE CEC, pp. 4417ā€“4424 (2007)

    Google ScholarĀ 

  31. Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images - a comprehensive review. Egypt. J. Radiol. Nuclear Med. 46(4), 1105ā€“1110 (2015)

    ArticleĀ  Google ScholarĀ 

  32. Sun, L., Zhang, S., Chen, H., Luo, L.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019)

    ArticleĀ  Google ScholarĀ 

  33. Tarasiewicz, T., Nalepa, J., Kawulok, M.: Skinny: a lightweight U-Net for skin detection and segmentation. In: Proceedings of the IEEE ICIP, pp. 2386ā€“2390 (2020)

    Google ScholarĀ 

  34. Verma, N., Cowperthwaite, M.C., Markey, M.K.: Superpixels in brain MR image analysis. In: Proceedings of the IEEE EMBC, pp. 1077ā€“1080 (2013)

    Google ScholarĀ 

  35. Wu, W., Chen, A.Y.C., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241ā€“253 (2014)

    ArticleĀ  Google ScholarĀ 

  36. Zhuge, Y., et al.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234ā€“5243 (2017)

    ArticleĀ  Google ScholarĀ 

  37. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369ā€“376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    ChapterĀ  Google ScholarĀ 

Download references

Acknowledgments

This research was supported by the National Science Centre, Poland, under Research Grant DEC-2017/25/B/ST6/00474. MK was supported by the Silesian University of Technology funds through the Rectorā€™s Research and Development Grant 02/080/RGJ20/0004. JN was supported by the Silesian University of Technology grant for maintaining and developing research potential, and by the Rectorā€™s Research and Development Grant 02/080/RGJ20/0003.

This paper is in memory of Dr.Ā Grzegorz Nalepa, an extraordinary scientist and pediatric hematologist/oncologist at Riley Hospital for Children, Indianapolis, USA, who helped countless patients and their families through some of the most challenging moments of their lives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarasiewicz, T., Kawulok, M., Nalepa, J. (2021). Lightweight U-Nets for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics