Skip to main content

Glioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processing

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

  • 2240 Accesses

Abstract

This paper proposes a glioma segmentation method based on neural networks. The base of the network is a UNet, expanded by residual blocks. Several preprocessing steps were applied before training, such as intensity normalization, high intensity cutting, cropping, and random flips. 2D and 3D solutions are implemented and tested, and results show that the 3D network outperforms 2D directions, therefore we stayed with 3D directions.

The novelty of the method is the energy-based post-processing. Snakes [10], and conditional random fields (CRF) [11] were applied to the neural network’s predictions. Snake or active contour needs an initial outline around the object – e.g. the network’s prediction outline - and it can correct the contours of the tumor based on calculating the energy minimum, based on the intensity values at a given area. CRF is a specific type of graphical model, it uses the network’s prediction and the raw image features to estimate the posterior distribution (the tumor contour) using energy function minimization.

The proposed methods are evaluated within the framework of the BRATS 2020 challenge. Measured on the test dataset the mean dice scores of the whole tumor (WT), tumor core (TC) and enhancing tumor (ET) are 86.9%, 83.2% and 81.8% respectively. The results show high performance and promising future work in tumor segmentation, even outside of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds) BrainLes 2018. LNCS, vol. 11384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

  2. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

  3. Wu, S., Li, H., Guan, Y.: Multimodal brain tumor segmentation using u-net. In: MICCAI BraTS, pp. 508–515 (2018)

    Google Scholar 

  4. Mazumdar, I.: Automated Brain tumour segmentation using deep fully residual convolutional neural networks. arXiv (2019): arXiv-1908

    Google Scholar 

  5. Mehta, R., Arbel, T.: 3D U-Net for brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds) BrainLes 2018. LNCS, vol. 11384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_23

  6. Sun, L., et al.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019)

    Google Scholar 

  7. Zhang, X., Jian, W., Cheng, K.: 3D dense U-nets for brain tumor segmentation. Springer (2018)

    Google Scholar 

  8. Malathi, M., Sinthia, P.: Brain tumour segmentation using convolutional neural network with tensor flow. Asian Pacific J. Cancer Prevention: APJCP 20(7), 2095 (2019)

    Article  Google Scholar 

  9. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  11. Sutton, C., McCallum, A.: An introduction to conditional random fields. Found. Trends Mach. Learn. 4(4), 267–373 (2011)

    Google Scholar 

  12. Gladson, C.L., Prayson, R.A., Liu, W.M.: The pathobiology of glioma tumors. Ann. Rev. Pathol. Mech. Disease 5, 33–50 (2010)

    Google Scholar 

  13. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  14. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  15. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXiv preprint arXiv:1811.02629 (2018)

  16. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  17. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

Download references

Acknowledgement

This research is part of the Deep MR-only Radiation Therapy activity (project numbers: 19037, 20648) that has received funding from EIT Health. EIT Health is supported by the European Institute of Innovation and Technology (EIT), a body of the European Union receives support from the European Union´s Horizon 2020 Research and innovation programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Zsamboki , Petra Takacs or Borbala Deak-Karancsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zsamboki, R., Takacs, P., Deak-Karancsi, B. (2021). Glioma Segmentation with 3D U-Net Backed with Energy-Based Post-Processing. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics