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Abstract. We apply nnU-Net to the segmentation task of the BraTS
2020 challenge. The unmodified nnU-Net baseline configuration already
achieves a respectable result. By incorporating BraTS-specific modifi-
cations regarding postprocessing, region-based training, a more aggres-
sive data augmentation as well as several minor modifications to the
nnU-Net pipeline we are able to improve its segmentation performance
substantially. We furthermore re-implement the BraTS ranking scheme
to determine which of our nnU-Net variants best fits the requirements
imposed by it. Our method took the first place in the BraTS 2020 com-
petition with Dice scores of 88.95, 85.06 and 82.03 and HD95 values
of 8.498,17.337 and 17.805 for whole tumor, tumor core and enhancing
tumor, respectively.
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1 Introduction

Brain tumor segmentation is considered one of the most difficult segmentation
problems in the medical domain. At the same time, widespread availability of
accurate tumor delineations could significantly improve the quality of care by
supporting diagnosis, therapy planning and therapy response monitoring [1].
Furthermore, segmentation of tumors and associated subregions allows for iden-
tification of novel imaging biomarkers, which in turn enable more precise and
reliable disease stratification [2] and treatment response prediction [3].

The Brain Tumor Segmentation Challenge (BraTS) [4,5] provides the largest
fully annotated and publicly available database for model development and is the
go-to competition for objective comparison of segmentation methods. The BraTS
2020 dataset [6,5,7,8] comprises 369 training and 125 validation cases. Reference
annotations for the validation set are not made available to the participants.
Instead, participants can use the online evaluation platform3 to evaluate their
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models and compare their results with other teams on the online leaderboard4.
Besides the segmentation task, the BraTS 2020 competition features a survival
prediction task as well as an uncertainty modelling task. In this work, we only
participate in the segmentation task.

Recent successful entries in the BraTS challenge are exclusively based on
deep neural networks, more specifically on encoder-decoder architectures with
skip connections, a pattern which was first introduced by the U-Net [9]. Numer-
ous architectural improvements upon the U-Net have been introduced, many of
which are also used in the context of brain tumor segmentation, for example
the addition of residual connections [10,11,12,13,14], densely connected layers
[15,16,17,18,17] and attention mechanisms [19,18]. In the context of network
architectures, the winning contributions of 2018 [11] and 2019 [12] should be
highlighted as they extend the encoder-decoder pattern with a second decoder
trained on an auxiliary task for regularization purposes. Training schemes are
usually adapted to cope with the particular challenges imposed by the task
of brain tumor segmentation. The stark class imbalance, for instance, necessi-
tates appropriate loss functions for optimization: Dice loss [20,21] and focal loss
[22] are popular choices [23,13,16,18,11,12,24]. Since BraTS evaluates segmen-
tations using the partially overlapping whole tumor, tumor core and enhancing
tumor regions [4], optimizing these regions instead of the three provided class
labels (edema, necrosis and enhancing tumor) can be beneficial for performance
[14,23,12,16]. Quantifying the uncertainty in the data has also been shown to
improve results [18].

The methods presented above are highly specialized for brain tumor seg-
mentation and their development required expertise as well as extensive exper-
imentation. We recently proposed nnU-Net [25], a general purpose segmenta-
tion method that automatically configures segmentation pipelines for arbitrary
biomedical datasets. nnU-Net set new state of the art results on the majority of
the 23 datasets it was tested on, underlining the effectiveness of this approach.
In the following, we will investigate nnU-Net’s suitability for brain tumor seg-
mentation. We use nnU-Net both as a baseline algorithm and as a framework
for model development.

2 Method

2.1 Rankings should be used for model selection

Optimizing a model for a competition is often mistakenly treated equivalently to
optimizing the model towards the segmentation metrics used in that competition.
Segmentation metrics, however, only tell half the story: they describe the model
on a per-image level whereas the actual ranking is based on a consolidation of
these the metrics across all test cases. Ranking schemes can be differentiated in
’aggregate then rank’ and ’rank then average’ approaches. In the former, some
aggregated metric (for example the average) is computed and then used to rank

4 https://www.cbica.upenn.edu/BraTS20/lboardValidation.html
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the participants. In the latter, the participants are ranked on each individual
training case and then their ranks are accumulated across all cases. Different
algorithm characteristics may be desired depending on the ranking scheme that is
used to evaluate them. For example, in an ’aggregate then rank’ scheme, median
aggregation (as opposed to the mean) would be more forgiving to algorithms that
produce badly predicted outliers. We refer to [26] for a comprehensive analysis
on the impact of ranking on challenge results.

BraTS uses a ’rank then aggregate’ approach, most likely because it is well
suited to combine different types of segmentation metrics (such as HD95 and
Dice). Effectively, each submission obtains six ranks per test case (one for each
of the 3 evaluated regions times the 2 segmentation metrics) and the ranks are
then averaged across all cases and metrics (see 5). The final rank is normalized by
the number of participating algorithms to form the ranking score, which ranges
from 0 (best) to 1 (worst).

The BraTS evaluation of cases with empty reference segmentations for en-
hancing tumor is tailored for the ranking scheme used by the competition: if a
participant predicts false positive voxels in these cases, BraTS assigns the worst
possible value for both metrics (Dice 0, HD95 373.13) whereas a correctly re-
turned empty segmentation yields perfect values (Dice 1, HD95 0). Thus, the
enhancing tumor label essentially becomes binary for all participants: they either
achieve the (shared) first or (shared) last rank.

As a consequence, optimizing models to maximize the mean-aggregated Dice
scores and HD95 values returned by the BraTS evaluation platform may not
be an ideal surrogate for optimal performance on the BraTS competition. We
therefore reimplemented the ranking used by the BraTS competition and used
it to rank our models against each other in order to select the best performing
variant(s).

2.2 nnU-Net baseline

We base our method on nnU-Net, our recently proposed fully automatic frame-
work for the configuration of segmentation methods. We refer to [25] for a de-
tailed description of nnU-Net.

First, we apply nnU-Net without any modifications to provide a baseline for
later modifications. The design choices made by nnU-Net are described in the
following.

nnU-Net normalizes the brain voxels of each image by subtracting their mean
and dividing by their standard deviation. The non-brain voxels remain at 0.
The network architecture generated by nnU-Net is displayed in Figure 1. It
follows a 3D U-Net[27,9] like pattern and consists of an encoder and a decoder
which are interconnected by skip connections. nnU-net does not use any of the
recently proposed architectural variations and only relies on plain convolutions
for feature extraction. Downsampling is performed with strided convolutions and
upsampling is performed with convolution transposed. Auxiliary segmentation

5 https://zenodo.org/record/3718904
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Fig. 1. Network Architecture as generated by nnU-Net. nnU-Net uses only plain U-
Net-like architectures. For BraTS 2020, an input patch size of 128 × 128 × 128 was
selected. Downsampling is done with strided convolutions, upsampling is implemented
as convolution transposed. Feature map sizes are displayed in the encoder part of the
architecture. The feature maps in the decoder mirror the encoder. Auxiliary segmenta-
tion outputs used for deep supervision branch off at all but the two lowest resolutions
in the decoder.

outputs, which are used for deep supervision, branch off at all but the two lowest
resolutions in the decoder. The input patch size is selected to be 128×128×128
with a batch size of 2. A total of five downsampling operations are performed,
resulting in a feature map size of 4 × 4 × 4 in the bottleneck. Initial number of
convolutional kernels is set to 32, which is doubled with each downsampling up
to a maximum of 320. The number of kernels in the decoder mirrors the encoder.
Leaky ReLUs [28] are used as nonlinearities. Instance normalization [29] is used
for feature map normalization.

Training objective is the sum of Dice [21,20] and cross-entropy loss. The
loss operates on the three class labels edema, necrosis and enhancing tumor.
nnU-Net uses stochastic gradient descent with an initial learning rate of 0.01
and a Nesterov momentum of 0.99. Training runs for a total of 1000 epochs,
where one epoch is defined as 250 iterations. The learning rate is decayed with
a polynomial schedule as described in [30]. Training patches are cropped from
randomly selected training cases. Data augmentation is applied on the fly during
training (see also Supplementary Information D in [25]).

2.3 BraTS-specific optimizations

Besides its role as a high quality standardized baseline and out-of-the-box seg-
mentation tool, we also advertise nnU-Net as a framework for method devel-
opment. To underline this aspect of nnU-Net’s broad functionality, we select
promising BraTS-specific modifications and integrate them into nnU-Net’s con-
figuration.
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Region-based training The provided labels for training are ’edema’, ’non-
enhancing tumor and necrosis’ and ’enhancing tumor’. The evaluation of the seg-
mentations is, however, performed on three partially overlapping regions: whole
tumor (consisting of all 3 classes), tumor core (non-enh. & necrosis + enh. tu-
mor) and enhancing tumor. It has been shown previously [14,23,12,16,18,11] that
directly optimizing these regions instead of the individual classes can improve
performance on the BraTS challenge. To this end, we replace the softmax non-
linearity in our network architecture with a sigmoid and change the optimization
target to the three tumor subregions. We also replace the crossentropy loss term
with a binary cross-entropy that optimizes each of the regions independently.

Postprocessing When the reference segmentation for enhancing tumor is empty,
BraTS evaluation awards zero false positive predictions with a Dice score of 1
(the Dice would otherwise be undefined due to division by 0), thus placing the
corresponding algorithm in the (shared) first rank for this test case, region and
metric. This can be exploited with the goal of improving the average rank of the
submitted method and thus its overall ranking in the challenge. By removing en-
hancing tumor entirely if the predicted volume is less than some threshold, one
can accumulate more perfect rankings at the expense of some additional cases
with a Dice score of 0 (and corresponding worst rank). Even though this strat-
egy has the side effect of removing some true positive predictions, the net gain
can out-weigh the losses. Removed enhancing tumor is replaced with necrosis to
ensure that these voxels are still considered part of the tumor core. We optimize
the threshold for postprocessing on our training set cross-validation twice, once
via maximizing the mean Dice score and once via minimizing the ranking score
in our internal BraTS-like ranking. Whenever we present postprocessed results,
we select the best value even if that value was achieved by the opposing selection
strategy.

2.4 Further nnU-Net Modifications

Increased batch size Over the past years, the BraTS dataset has continued
to grow in size. The low batch size used by nnU-Net results in noisier gradi-
ents, which potentially reduces overfitting but also constrains how accurately
the model can fit the training data. With a larger dataset, it may be benefi-
cial to increase the batch size (bias variance trade-off). To this end, we modify
nnU-Net’s configuration to increase the batch size from 2 to 5 in an attempt to
improve the model accuracy.

More data augmentation Data augmentation can effectively be used to ar-
tificially enlarge the training set. While nnU-Net already uses a broad range
of aggressive data augmentation techniques, we make use of even more aggres-
sive augmentations in an attempt to increase the robustness of our models. All
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augmentations are applied on the fly during training using the batchgenerators
framework6. Relative to the nnU-Net baseline, we make the following changes:

– increase the probability of applying rotation and scaling from 0.2 to 0.3.

– increase the scale range from (0.85, 1.25) to (0.65, 1.6)

– select a scaling factor for each axis individually

– use elastic deformation with a probability of 0.3

– use additive brightness augmentation with a probability of 0.3

– increase the aggressiveness of the Gamma augmentation

Batch normalization In our participation in the M&Ms challenge 7 we noticed
that more aggressive data augmentation could be used to effectively close the
domain gap to other scanners, but only when used in conjunction with batch
normalization (instead of instance normalization) (results available here 8, our
paper is not yet available). In BraTS, Dice scores for the test cases are often
lower than the reported values on the training and validation dataset, which
makes us believe that there may be a domain gap between the test set and
the training and validation sets. This suggests that pursuing a this strategy for
BraTS as well may be beneficial.

Batch dice The standard implementation of the Dice loss computes the loss
for every sample in the minibatch independently and then averages the loss
over the batch (we call this the sample Dice). Small errors in samples with few
annotated voxels can cause large gradients and dominate the parameter updates
during training. If these errors are caused by imperfect predictions of the model,
these large gradients are desired to push the model towards better predictions.
However, if the models predictions are accurate and the reference segmentation
is imperfect, these large gradients will be counterproductive during training. We
therefore implement a different Dice loss computation: instead of treating the
samples in a minibatch independently, we compute the dice loss over all samples
in the batch (pretending they are just a single large sample, we call this the batch
Dice). This effectively regularizes the Dice loss because samples with previously
only few annotated voxels are now overshadowed by other samples in the same
batch.

Abbreviations We will represent our models using the following abbreviations:

– BL/BL*: baseline nnU-Net without modifications. * indicates a batch size
of 5 instead of 2.

– R: Region-based training (see Section 2.3)

6 https://github.com/MIC-DKFZ/batchgenerators
7 https://www.ub.edu/mnms/
8 https://www.ub.edu/mnms/results.html

https://github.com/MIC-DKFZ/batchgenerators
https://www.ub.edu/mnms/
https://www.ub.edu/mnms/results.html
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– DA/DA*: more aggressive data augmentation as described in Section 2.4. *
indicates that the brightness augmentation is only applied with a probability
of 0.5 for each input modality.

– BD: model trained with batch Dice (as opp posed to sample Dice, see Section
2.4)

We denote our models by the modifications that were applied to it, for exam-
ple BL*+R+BD. Note that all models shown will have postprocessing applied
to them.

3 Results

3.1 Aggregated Scores

Table 1. Training set results (n=369). All experiments were run as 5-fold cross-
validation. See Section 2.4 for decoding the abbreviations

Model
Training Set (Dice, 5-fold CV)
Whole Core Enh. Mean

BL 91.6 87.23 80.83 86.55
BL* 91.85 86.24 80.18 86.09
BL*+R 91.75 87.24 82.21 86.73
BL*+R+DA 91.87 87.97 81.37 87.07
BL*+R+DA+BN 91.57 87.59 81.29 86.82
BL*+R+DA+BD 91.76 87.67 80.94 86.79
BL*+R+DA+BN+BD 91.7 87.21 81.7 86.87
BL*+R+DA*+BN 91.6 87.51 80.94 86.68
BL*+R+DA*+BN+BD 91.47 87.13 81.33 86.64

We train each configuration as a five-fold cross-validation on the training
cases (no external data is used). This not only provides us with a performance
estimate on the 369 training cases but also enables us to select the threshold for
postprocessing on the training set rather than the validation set. The results for
the different configurations are presented in Table 1.

We use the five models obtained from the cross-validation on the training
cases as an ensemble to predict the validation set. The aggregated Dice scores
and HD95 values as computed by the online evaluation platform are reported in
Table 2. Again we provide averages of the HD95 values and Dice scores across
the three evaluated regions for clarity.

As discussed in Section 2.1, these aggregated metric should not be used to
run model selection for the BraTS because they may not directly optimize the
ranking that will be used to evaluate the submissions. This becomes evident
when looking at the HD95 values of the enhancing tumor HD95. The HD95
averages are artificially inflated because false positive predictions in cases where
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Table 2. Validation set results. Predictions were made using the 5 models from the
training cross-validation as an ensemble. Metrics computed by the validation platform.
See Section 2.4 for decoding the abbreviations

Model
Dice HD95

Whole Core Enh. Mean Whole Core Enh. Mean

BL 90.6 84.26 77.67 84.18 4.89 5.91 35.10 15.30
BL* 90.93 83.7 76.64 83.76 4.23 6.01 41.06 17.10
BL*+R 90.96 83.76 77.65 84.13 4.41 8.80 29.82 14.34
BL*+R+DA 90.9 84.61 78.67 84.73 4.70 5.62 29.50 13.28
BL*+R+DA+BN 91.24 85.04 79.32 85.2 3.97 5.17 29.25 12.80
BL*+R+DA+BD 90.97 83.91 77.48 84.12 4.11 8.60 38.06 16.93
BL*+R+DA+BN+BD 91.15 84.19 79.99 85.11 3.72 7.97 26.28 12.66
BL*+R+DA*+BN 91.18 85.71 79.85 85.58 3.73 5.64 26.41 11.93
BL*+R+DA*+BN+BD 91.19 85.24 79.45 85.29 3.79 7.77 29.23 13.60

no reference segmentation for enhancing tumor is present are hard coded to
receive a HD95 value of 373.13. Given that the vast majority of HD95 for this
class is much smaller (even the 90th percentile is just 11.32 for our final validation
set submission), these outlier values dominate the mean aggregation and result in
mostly uninformative mean HD95: Switching the metric a single case from 373.13
to 0 (due to the removal of false positive predictions) can have a huge effect on
the mean. The same is true for the Dice score, but to a lesser extend: a HD95
of 373.13 is basically impossible to occur even if the predicted segmentation is
of poor quality whereas a low Dice score is likely to happen.

3.2 Internal BraTS-like ranking

Table 3. Rankings of our proposed nnU-Net variants on the training and validation
set. For each set, we rank twice: once based on the mean Dice and once using our
reimplementation of the BraTS ranking.

Model
Training set Validation set

rank based
on mean Dice

BraTS ranking
rank based

on mean Dice
BraTS ranking

value rank value rank value rank value rank

BL 86.55 8 0.3763 8 84.18 6 0.4079 8
BL* 86.09 9 0.3767 9 83.76 9 0.4236 9
BL*+R 86.73 5 0.3393 5 84.13 7 0.4005 7
BL*+R+DA 87.07 1 0.3243 3 84.73 5 0.3647 5
BL*+R+DA+BN 86.82 3 0.3377 4 85.20 3 0.3577 4
BL*+R+DA+BD 86.79 4 0.3231 2 84.12 8 0.3726 6
BL*+R+DA+BN+BD 86.87 2 0.3226 1 85.11 4 0.3487 3*
BL*+R+DA*+BN 86.68 6 0.3521 6 85.58 1 0.3125 1*
BL*+R+DA*+BN+BD 86.64 7 0.3595 7 85.29 2 0.3437 2*
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To overcome the shortcomings of metric aggregation-based model selection
we create an internal leaderboard where we rank our nnU-Net variants presented
above (as well as others that we omitted for brevity) against each other using
a reimplementation of the BraTS ranking. Results of both ranking schemes are
summarized in Table 3. While the ranks between the mean Dice and the BraTS
ranking scheme are different, both still seem to follow similar trends. On the
training set, for example, the BL and BL* models constitute the worst con-
tenders while BL*+R+DA+BN+BD performs quite well. Within the validation
set the correlation between the ranking schemes es even more pronounced. When
comparing the model performance between the training and validation sets (any
of the ranking schemes) the rankings differ drastically: the DA* models perform
exceptionally well on the validation set (rank 1 and 2) whereas they underper-
form on the training set (rank 6 and 7). This creates a difficult situation. How do
we choose the models used for the test set submission? Do we trust more in the
125 validation cases because we do not have access to the reference labels and
thus can not overfit as easily or do we favor the training set because is has almost
3 times as many cases and should therefore provide more reliable performance
estimates?

We opted for trusting the validation set over the training set and thus se-
lected the three top performing models to build our final ensemble: BL∗ + R +
DA∗ + BN + BD, BL*+R+DA*+BN and BL*+R+DA+BN+BD. Note that ad-
ditionally to the 5 models from the cross-validation we had 10 more models of the
BL*+R+DA*+BN configuration (each trained on a random 80:20 split of the
training cases). Thus, our final ensemble consisted of 5 + 5 + 15 = 25 models.
Note that ensembling was implemented by first predicting the test cases indi-
vidually with each configuration, followed by averaging the sigmoid outputs to
obtain the final prediction. Therefore, the 15 models of the BL*+R+DA*+BN
configuration had the same influence on the final prediction as the other config-
urations.

Our final ensemble achieved mean Dice scores of 91.24, 85.06 and 79.89 and
HD95 of 3.69, 7.82 and 23.50 for whole tumor, tumor core and enhancing tumor,
respectively (on the validation set). With a mean Dice score of 85.4 the ensem-
ble appears to perform worse in terms of the ’aggregate then rank’ approach.
However, since it sits comfortably on the first place of our internal ’rank then
aggregate’ ranking with a score of 0.2963 we are confident in its segmentation
performance.

3.3 Qualitative results

Figure 2 provides a qualitative overview of the segmentation performance. It
shows results generated by our ensemble on the validation set. To rule out cherry
picking we standardized the selection of presented validation cases: They were
selected as best, worst, median and 75th and 25th percentiles based on their Dice
scores (averaged over the three validation regions). As can be seen in the figure,
the segmentation quality is high overall. The low tumor core score for the worst
example hints at one of the potential issues with the definition of this class in
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Fig. 2. Qualitative validation set results. Cases were selected as best, worst, median
and 75th and 25th percentile. Within each row, the raw T2 image is shown to the left,
the T1c image in the middle and on overlay with the generated segmentation on the
T1c image is shown on the right. Edema is shown in violet, enhancing tumor in yellow
and necrosis/non-enhancing tumor on turquoise.
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the reference segmentations (see Discussion). The enhancing tumor score of 0 in
the absence of predicted enhancing tumor voxels indicates either that our model
missed a small enhancing tumor lesion or that it was removed as a result of
our postprocessing. An inspection of the non-postprocessed segmentation mask
reveals that the enhancing tumor lesion was indeed segmented by the model and
must have been removed during postprocessing.

3.4 Test set results

Table 4. Quantitative test set results. Values were provided by the challenge organiz-
ers.

Dice HD95
Enh Whole Core Enh Whole Core

Mean 82.03 88.95 85.06 17.805 8.498 17.337
StdDev 19.71 13.23 24.02 74.886 40.650 69.513
Median 86.27 92.73 92.98 1.414 2.639 2.000
25th percentile 79.30 87.76 88.33 1.000 1.414 1.104
75th percentile 92.25 95.17 96.19 2.236 4.663 3.606

Table 4 provides quantitative test set results. Our submission took the first
place in the BraTS 2020 competition (see https://www.med.upenn.edu/cbica/
brats2020/rankings.html).

4 Discussion

This manuscript describes our participation in the segmentation task of the
BraTS 2020 challenge. We use nnU-Net [25] not only as our baseline algorithm
but also as a framework for method development. nnU-Net again proved its
generalizability by providing high segmentation accuracy in an out-of-the-box
fashion. On the training set cross-validation, the performance of the nnU-Net
baseline is very close to the configurations that were specifically modified for the
BraTS challenge. On the validation set, however, the proposed BraTS-specific
modifications provide substantially higher segmentation performance. Our final
ensemble was selected based on the three best models on the validation set
(as determined with our reimplementation of the BraTS ranking). It obtained
validation Dice scores of 91.24, 85.06 and 79.89 as well as HD95 of of 3.69, 7.82
and 23.5 for whole tumor, tumor core and enhancing tumor, respectively.

Our approach won the BraTS 2020 competition. On the test set, our model
obtained Dice scores of 88.95, 85.06 and 82.03 and HD95 values of 8.498, 17.337
and 17.805 for whole tumor, tumor core and enhancing tumor, respectively.

We should note that this manuscript only spans a small number of modi-
fications and lacks sufficiently extensive experimental validation thereof. While

https://www.med.upenn.edu/cbica/brats2020/rankings.html
https://www.med.upenn.edu/cbica/brats2020/rankings.html
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most of our nnU-Net configurations achieve good performance, our results do
not allow us to accurately pinpoint which aspects contributed the most. Some
design choices may even have reduced our overall performance. Increasing the
batch size from 2 to 5 gave worse results according to both evaluated ranking
schemes and on both the training and validation set (see Table 3). This is a
clear signal that the batch size should have been reverted to 2 for the remaining
experiments. We also believe that a more thorough optimization of hyperparam-
eters regarding both the training scheme as well as the data augmentation could
result in further performance gains.

Based on our observations in Figure 2, one major source of error appears
to be the tumor core prediction. In particular the worst presented example has
a rather low Dice score for this region, even though the result seems visually
plausible. We believe that this failure mode is not necessarily an issue inherent
to our model but potentially originates from an inconsistency in the definition of
the non-enhancing tumor and necrosis label, particularly in LGG cases. While
the necrosis part of this label is easy to recognize, the non-enhancing tumor
region often has little evidence in the image and the associated annotations may
be subjective.

The enhancing tumor class is arguably the most difficult to segment in this
dataset. What makes this class particularly challenging is the way its evaluation
is handled when the reference segmentation of an image does not contain this
class. The BraTS evaluation scheme favors the removal of small enhancing tumor
lesions and thus encourages such postprocessing. In a clinical scenario where the
accurate detection of small enhancing tumors could be critical, this property is
not necessarily desired and we recommend to omit the postprocessing presented
in this manuscript.

Just like many other BraTS participants, we have used the aggregated Dice
scores and HD95 values for model selection in previous BraTS challenges [13,23].
As discussed in this manuscript, this strategy may not be ideal because the
ranking that is used to determine the winning contributions works on a different
principle. Indeed, when comparing the rankings of our models relative to each
other on the training and validation set, we observed disparities between ’ag-
gregate then rank’ and ’rank then aggregate’. However, the overall trends were
similar between the ranking methods indicating that a model selection based on
metric aggregation is still going into the right direction.

While experimenting with the ’rank then aggregate’ ranking on our model
configurations we noted some instability in the ranks obtained by out models:
when models are added or removed from the pool of methods, the ranking of
other methods relative to each other could change. This seems to be an inherent
property of this ranking [26]. Even though this might appear alarming at first
glance, we attribute most of the instability to the similarity of the methods within
the pool which has certainly overemphasized this potential issue. We expect the
ranking to be more stable the more diverse the evaluated methods are (especially
on the test set where all methods are compared against each other).



nnU-Net for Brain Tumor Segmentation 13

Given that aggregated metric are at least in part disconnected from the ac-
tual evaluation of the challenge, it is frustrating that the online leaderboards for
training and validation sets only display mean values for the competing methods
and therefore do not allow for a perfectly accurate comparison with other par-
ticipants. Especially in cases where the enhancing tumor class is absent from the
reference segmentation, the dichotomy of the returned metric values (0 or 1 for
the Dice score and 0 or 373.13 for the HD95) can overshadow the more minute
(but still very meaningful) differences between the teams on the validation cases
that do actually contain this label. We would love to see the ’rank then aggre-
gate’ ranking scheme implemented in the online leaderboards as well so that they
become more informative about a models performance on the BraTS challenge.

The source code for our submission is publicly available as part of the nnU-
Net repository (https://github.com/MIC-DKFZ/nnUNet). A docker image for
reproducing our test set predictions is available on Docker Hub9.
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27. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-
net: learning dense volumetric segmentation from sparse annotation,” in Interna-
tional conference on medical image computing and computer-assisted intervention.
Springer, 2016, pp. 424–432.

28. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

29. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing
ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

30. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 834–848, 2017.


	nnU-Net for Brain Tumor Segmentation

