Skip to main content

Squeeze-and-Excitation Normalization for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

In this paper we described our approach for glioma segmentation in multi-sequence magnetic resonance imaging (MRI) in the context of the MICCAI 2020 Brain Tumor Segmentation Challenge (BraTS). We proposed an architecture based on U-Net with a new computational unit termed “SE Norm” that brought significant improvements in segmentation quality. Our approach obtained competitive results on the validation (Dice scores of 0.780, 0.911, 0.863) and test (Dice scores of 0.805, 0.887, 0.843) sets for the enhanced tumor, whole tumor and tumor core sub-regions. The full implementation and trained models are available at https://github.com/iantsen/brats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 4(1), 1–13 (2017)

    Google Scholar 

  2. Upadhyay, N., Waldman, A.: Conventional MRI evaluation of gliomas. British J. Radiol. 84(2), Special Issue 2 S107–S111 (2011)

    Google Scholar 

  3. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  4. Bakas, S. et al: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. TCIA (2017)

    Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. TCIA (2017)

    Google Scholar 

  6. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A. et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)

  7. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167 (2015)

  8. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  9. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer Normalization. arXiv preprint arXiv:1607.06450 (2016)

  10. Wu, Y., He, K.: Group normalization. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks, CoRR, vol. abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  15. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient Object Localization Using Convolutional Networks. arXiv preprint arXiv:1411.4280 (2014)

  16. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object Detection. arXiv preprint arXiv:1708.02002 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Iantsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iantsen, A., Jaouen, V., Visvikis, D., Hatt, M. (2021). Squeeze-and-Excitation Normalization for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics