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Abstract. We propose combining memory saving techniques with tra-
ditional U-Net architectures to increase the complexity of the models
on the Brain Tumor Segmentation (BraTS) challenge. The BraTS chal-
lenge consists of a 3D segmentation of a 240x240x155x4 input image
into a set of tumor classes. Because of the large volume and need for
3D convolutional layers, this task is very memory intensive. To address
this, prior approaches use smaller cropped images while constraining the
model’s depth and width. Our 3D U-Net uses a reversible version of
the mobile inverted bottleneck block defined in MobileNetV2, MnasNet
and the more recent EfficientNet architectures to save activation mem-
ory during training. Using reversible layers enables the model to recom-
pute input activations given the outputs of that layer, saving memory by
eliminating the need to store activations during the forward pass. The
inverted residual bottleneck block uses lightweight depthwise separable
convolutions to reduce computation by decomposing convolutions into a
pointwise convolution and a depthwise convolution. Further, this block
inverts traditional bottleneck blocks by placing an intermediate expan-
sion layer between the input and output linear 1x1 convolution, reducing
the total number of channels. Given a fixed memory budget, with these
memory saving techniques, we are able to train image volumes up to
3x larger, models with 25% more depth, or models with up to 2x the
number of channels than a corresponding non-reversible network.

Keywords: Depthwise separable convolution · inverted residual · re-
versible network.

1 Introduction

Gliomas are a type of tumor affecting the glial cells that support the neurons in
the central nervous system including the brain [8]. Gliomas are associated with
hypoxia which causes them to invade and deprive healthy tissue of oxygen leading
to necrosis. This can result in a range of symptoms including headaches, nausea,
and vision loss. Brain gliomas are typically categorized into low grade glioma
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and high grade glioma based on their size and rate of growth with high grade
gliomas having a much poorer prognosis and higher likelihood of recurrence after
treatment. Diagnosing and treating gliomas early before they become serious is
essential for improving the prognosis of the disease.

Magnetic resonance imaging (MRI) is one of the most commonly used imag-
ing techniques used to identify neurological abnormalities including brain gliomas
[5]. One of the strengths of MRI is the ability to measure several different prop-
erties of tissue by adjusting the settings of the scan, namely the echo time and
repetition time. For example, a scan with a short echo time and a short rep-
etition time will result in a T1-weighted image that is sensitive to a property
of tissues called spin-lattice relaxation which can help to differentiate between
white and grey matter. A scan with longer echo and repetition times will result
in a T2-weighted image that is sensitive to the spin-spin relaxation property of
tissues and can be used to highlight the presence of fat and water. Another type
of image called fluid attentuated inversion recovery (FLAIR) can be obtained
by applying an inversion radiofrequency pulse that has the effect of nulling the
signal from water making it easier to visualize lesions near the periphery of ven-
tricles. Addition- ally, it is possible to inject a paramagnetic constrast agent such
as gadolinium into the blood stream prior to the scan which will amplify signal
from blood and make the vessels easier to visualize. Typically, for diagnosis of
gliomas an MRI exam consists of T1-weighted, T1-weighted with gadolinium,
T2-weighted, and FLAIR scans.

Based on an MRI exam, it is possible to identify four regions associated with
the glioma [1]. At the center of the tumor is the region that is most affected and
consists of a fluid filled necrotic core that is associated with high grade gliomas.
The necrotic core is surrounded by a region called the enhancing region that
hasn’t undergone necrosis but still exhibits enhanced signal in T1-weighted im-
ages. Surrounding the enhancing region, is a region of the tumor that has reduced
signal on T2-weighted images and is thus called the non-enhancing region. The
core tumor consisting of the enhancing and non-enhancing regions is surrounded
by peritumoral edematous tissue that is characterized by hyperintense signal on
T2-weighted images and hypointense signal on T1-weighted images. Because the
necrotic core is difficult to distinguish from the surrounding enhancing region
the two can be grouped into the same class.

Because of the heterogeneous nature of the composition and morphology of
gliomas segmentation of these tumors on the MRI is time consuming even for
experienced radiologists [17]. For a human, the task of tracing an outline of
various tumor classes on an imaging volume is limited by the two dimensional
nature of human vision which requires iterating through several 2D slices in order
view the entire volume. Furthermore, manual segmentation is subject variabil-
ity between different radiologists and even between the same radiologist across
multiple attempts. Computer vision algorithms could potentially help reduce
the time needed for segmentation while also improving accuracy and reducing
variance.



3D U-Net with Reversible Mobile Inverted Bottlenecks 3

Convolutional neural networks have been shown to be a powerful class of
machine learning models for extracting features from images to perform tasks
such as classification, detection, and segmentation. For segmentation, the feature
extraction stage of the network (encoder) is followed by a decoder that outputs
a score for each output class. One of the first models proposed for segmentation
called the Fully Convolutional Network (FCN) [13] consists of 7 convolutional
layers in the encoder each of which reduces the image size while increasing the
number of features followed by a single deconvolutional layer consisting of either
transposed convolution or bilinear interpolation for upsampling. Because the
FCN does not consist of any fully connected layers, it can be used with images
of any size. While the FCN had strong performance on segmentation of natural
images, the drawback of the FCN architecture is that the encoder layers lose
local information through several layers of filtering that cannot be recovered
through the single decoder layer. The U-Net [15] was shown to perform better
on medical image segmentation. Instead of a single layer in the decoder, the U-
Net uses the same number of layers as in the encoder resulting in a symmetric U
shaped architecture. The U-Net introduced skip connections between the output
of each encoder layer and the input of the corresponding decoder layer. The
advantage of the skip connections is that precise local information is retained
and can be used by the decoder in achieving sharp segmentation outlines. The
U-Net model is very popular in biomedical image segmentation due to its ability
to segment images efficiently with a very limited amount of labeled training
data. In addition, several variants of U-Net models have also been successfully
implemented in various kinds of computer vision applications [23,10,18].

Although, U-Net models have been used successfully for many vision tasks,
they are difficult to scale to high resolution images or 3D volumetric datasets.
Activation memory requirements, which scale with network depth and mini-
batch size, quickly become prohibitive. Thus, one of the main challenges with
3D segmentation of high-resolution MRIs is that the large volumetric images
result in a high memory footprint to store the activations at the intermediate
layers of the U-Net, which in effect limits the size of the network that can be used
within the memory budget of modern deep learning accelerators. One approach
for addressing this limitation is to crop the image volume into patches sampled
at different scales to reduce activation memory [12]. However, this strategy has
limitations since it requires stitching together several cropped regions during
inference which can be problematic at the border of these regions. Furthermore,
cropping discards contextual information due to the lack of global context that
can be used to increase the accuracy of the segmentation [11]. Another memory
saving technique is to use multiple 2D slices and a less memory intensive 2D
network but this also prevents full utilization of the entire context and can limit
the power of the model.
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2 Methods

2.1 Reversible Layers

An alternative memory saving approach that does not compromise the expressive
power of the model is to use reversible layers [7,21] that reduce the memory
requirements in exchange for additional computation. If certain restrictions are
imposed on a residual layer, namely that the input dimensions are identical to
the output dimensions, it is possible to recover the input of that layer from
the output. Therefore, the input activations do not need to be stored during
the forward pass and can be reconstructed on-the-fly during backward pass to
compute the gradients of the weights.
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Fig. 1: The forward and backward computations of a reversible block.

The specific mechanism of a reversible layer is illustrated in Figure 1. During
the forward computation, the input to the reversible layer is split across the
channel dimension into two equally sized tensors x1 and x2. The F and G blocks
represent two identical blocks (e.g., Convolution→ Normalization→ Non-linear
Activation). The two output tensors y1 and y2 can be concatenated to get a ten-
sor with same dimensions as the input. This can be expressed with the following
equations:

y1 = x1 + F (x2) y2 = x2 + G(y1). (1)

On the backward pass, the input to the layer can be computed from the
output as illustrated in Figure 1. The gradients of the weights of F and G,
as well as the reversible block’s original inputs are calculated. The design of
the reversible block allows to reconstruct x1 and x2 given only y1 and y2 using
Equation 2, thus making the block reversible.

x2 = y2 −G(y1) x1 = y1 − F (x2). (2)

It has been shown that for many tasks reversible layers maintain the same
expressive power and achieve the same model accuracy as traditional layers
with approximately same number of parameters. Reversible layers have been
combined with the U-Net architecture to achieve memory savings by replacing a
portion of the blocks in both the encoder and decoder with a reversible variant
[6].
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Fig. 2: The reversible MBConv block with inverted residual bottleneck and depthwise separable
convolutions.

2.2 MobileNet Convolutional Block

We introduce another memory saving technique that can be combined with
reversibility to achieve additional performance by replacing traditional convo-
lutional layers found in the standard U-Net with mobile inverted bottleneck
convolutional block (MBConvBlock) introduced in MobileNetV2 [16] and later
used in neural architecture search (NAS) based models such as MnasNet [19]
and EfficientNet [20]. The MBConvBlock consists of two important features.
The components of this block are shown in Figure 2. It replaces standard con-
volutions with depthwise separable convolutions consisting of a depthwise con-
volution (in which each input channel is convolved with a single convolutional
kernel producing an output with same number of channels as the input) followed
by a pointwise 1x1x1 convolution (where for each voxel a weighted sum of the
input channels is computed to get the value of the corresponding voxel in the
output channel). In the case of separable convolutions such as the Sobel filter
for edge detection, it is possible to find values for the kernels of the depthwise
and pointwise convolutions that make it mathematically identical to a standard
convolution. More generally, even when the kernel of standard convolution is
not separable, the loss in accuracy with a depthwise separable convolution is
minimal and compensated for with reduction in total amount of computation
[20].

The second important feature of the MBConvBlock is the inverted residual
with linear bottleneck block. In a conventional bottleneck block found in residual
architectures such as ResNet-50 [9], the input to the block has a large number
of channels and undergoes dimensionality reduction from convolutional layers
with reduced number of channels before the final convolutional layer restores
the original dimensionality. In an inverted residual block, the input has low di-
mensionality but the first convolutional layer consists of a pointwise convolution
that results in expansion to a higher number of channels where the increase in
dimensionality is given by a parameter called the expand ratio. This is followed
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by a depthwise separable convolution with the depthwise convolution occurring
in the high dimensional space and the subsequent pointwise convolution project-
ing back into the lower dimensional space. This inverted bottleneck results in
fewer number of parameters than a standard bottleneck block but also reduces
the representational capacity of the network. To compensate for this, the nonlin-
ear ReLU activation after the final convolutional layer is eliminated which was
shown to improve accuracy in [16].

2.3 Architecture

Our architecture (Figure 3) consists of a U-Net with multiple levels of contrac-
tion in the encoder (through 2x2x2 max pooling) and the same number of levels
of expansion in the decoder (through trilinear interpolation for upsampling in-
stead of transposed convolutions as was shown to be preferable in [6]). Each level
consists of two convolutional blocks. In the encoder, the first block is a point-
wise convolution that increases the number of channels and the second block
is a reversible block where each of the components (F and G in Figure 1) is a
MBConvBlock with half the number of channels. We use additive instead of con-
catenated skip connections as in [6]. Because this memory intensive task requires
using a batch size of 1, we use group normalization [22] after the convolution
instead of batch normalization.
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Fig. 3: Our reversible U-Net architecture with MBConv blocks in the encoder and regular convo-
lutional blocks in the decoder. The downsampling and upsampling stages are depicted by red and
yellow arrows, respectively.

2.4 Training Procedure

Training was done using Nvidia V100 GPUs for 500 epochs with initial learning
rate of 0.0001 and learning rate drop by 5x at epoch 250 and 400. To speed up
training, mixed precision and data parallel training with 4 GPUs (effective batch



3D U-Net with Reversible Mobile Inverted Bottlenecks 7

size of 4) was used resulting in a net speedup of about 5x compared to single
GPU full precision training.
Dataset: The provided BraTS [14,2,1,3,4] training dataset consists of 370 total
examples each consisting of an MRI exam with 4 240x240x155 images (T1-
weighted, Gadolinium enhanced T1-weighted, T2-weighted, and FLAIR) and a
ground truth segmentation map grouping each voxel into one of four categories.
We split this dataset into 330 examples for training and keep the remaining 40
examples as the hold out set for validation.
Augmentation: Because of the limited amount of data, we make extensive use
of data augmentation to prevent overfitting. The augmentation applied includes
the following: random rotation of the volume along the longitudinal axis by a
random value between -20 and +20 degrees, random scaling up or down (resiz-
ing) of the image by at most 10%, random flipping about each axis, randomly
increasing or decreasing the intensity of the image by at most 10%, and random
elastic deformation.

3 Experiments and Results

We compare four types of reversible U-Net architectures each with a constant
14GB of memory usage. The baseline consists of standard convolutional blocks
for F and G in the reversible layers of the encoder. In the MBConv variants,
F and G in the reversible layers of the encoder are replaced with the MBConv
block. To make use of the additional memory, we explore using the full image
volume (MBConv-Base), using a deeper model with cropped images (MBConv-
Deeper), and a wider model with cropped images (MBConv-Wider).

Table 1: Summary of experiments.

Experiment Name Conv Block Image Size Channels Expand ratio

Baseline Standard 256x256x160 60, 120, 180, 240, 480 NA
MBConv-Base MB 256x256x160 30, 60, 120, 180, 240 2

MBConv-Deeper MB 128x128x128 30, 60, 120, 180, 240, 480 2
MBConv-Wider MB 128x128x128 30, 60, 120, 180, 240 8

As seen in Table 2, our best MBConv reversible architecture was found to be
the MBConv-Base variant which achieves a mean Dice score (averaged over all
classes) above 0.7317 on hold out set after 50 epochs of training and Dice score
of 0.7513 after convergence. The rate of convergence is faster than the baseline
which only reaches a Dice score of 0.7184 after 50 epochs of training although
the final score after convergence is slightly higher (0.7513). In Figure 4, a sample
segmentation for an example from the the training set and an example from the
holdout set indicate a close match between the prediction and the ground truth.

After identifying that the MBConv-Base variant performed the best, we
trained three different models of this architecture to convergence using differ-
ent initializations. We used following procedure to ensemble the three models



8 Pendse, Thangarasa et al.

to make the final prediction on the validation and test sets. For each image in
the test set, a histogram of the pixel values was computed and the chisquared
distance was computed with the histogram of each image in the training set. A
weighted sum was computed across the training set for each model where the
Dice score on each image was weighted by the chisquared distance of that image
to the test image. The model with the lowest weighted sum was used to make
the prediction for that particular test image

Table 2: Experimental results.

Experiment Name Dice Score after 50 epochs Dice Score after convergence

Baseline 0.7184 0.7513
MBConv-Base 0.7317 0.7501

MBConv-Deeper 0.7129 0.7483
MBConv-Wider 0.7092 0.7499

Fig. 4: Segmentation result for subject ID BraTS20 Training 210 (left) from training set (Dice ET
= 0.88, Dice WT = 0.93, DICE TC = 0.92) and subject ID BraTS20 Training 360 (right) from
holdout set (Dice ET = 0.92, Dice WT = 0.91, Dice TC = 0.95). Blue = whole tumor (WT), red =
enhancing tumor (ET), green = tumor core (TC).

4 Discussion

We demonstrated the benefits of replacing a standard convolutional block with
a MobileNet inverted residual with linear bottlneck block inside the reversible
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block of the encoder. This more parameter efficient MBConvBlock results in
faster convergence while still fitting in a 16 GB GPU. For the same computational
budget, the MBConvBlock gives more expressive power by replacing a single
convolution with multiple convolutions in the form of a bottleneck block which
has shown to improve accuracy on image classification tasks with architectures
such as ResNet-50. When comparing the Dice score for an equal number of
training steps, the MBConv-Basic variant is higher than the baseline. This is
despite the fact that hyperparameters were tuned on the baseline model and
the same values were used on the MB-Conv variant without further tuning.
A significant drawback however is that the depthwise separable convolutions
that are the dominant computation in the MB-Conv Block are slow on GPU.
This is because standard convolutions are optimized to make use of the reuse
of a convolutional kernel’s weights on different inputs whereas in the depthwise
separable convolutions does not have this optimization since each convolutional
kernel is only applied to a single input. Therefore even though the MB-Conv
block has fewer FLOPs than the standard one it is slower and results in longer
wall clock time for each epoch. The fact that fewer epochs were needed for
convergence suggests that the MB-Conv architecture is powerful and motivates
optimizations to hardware that make depthwise separable convolutions efficient.
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