Skip to main content

A Hybrid Convolutional Neural Network Based-Method for Brain Tumor Classification Using mMRI and WSI

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

In this paper, we propose a hybrid deep learning-based method for brain tumor classification using whole slide images (WSIs) and multimodal magnetic resonance image (mMRI). It comprises two methods: a WSI-based method and a mMRI-based method. For the WSI-based method, many patches are sampled from the WSI for each category as the training dataset. However, not all the sampling patches are representative of the category to which their corresponding WSI belongs without the annotations by pathologists. Therefore, some error tolerance schemes were applied when training the classification model to achieve better generalization. For the mMRI-based method, we firstly apply a 3D convolutional neural network (3DCNN) on the multimodal magnetic resonance image (mMRI) for brain tumor segmentation, which distinguishes brain tumors from healthy tissues, then the segmented tumors are used for tumor subtype classification using 3DCNN. Lastly, an ensemble scheme using the two methods was performed to reach a consensus as the final predictions. We evaluate the proposed method with the patient dataset from Computational Precision Medicine: Radiology-Pathology Challenge (CPM: Rad-Path) on Brain Tumor Classification 2020. The performance of the prediction results on the validation set reached 0.886 in f1_micro, 0.801 in kappa, 0.8 in balance_acc, and 0.829 in the overall average. The experimental results show that the performance with the consideration of both MRI and WSI outperforms the performance using single type of image dataset. Accordingly, the fusion from two image datasets can provide more sufficient information in diagnosis for the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom, Q.T., Gittleman, H., Truitt, G., Boscia, A., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20(Suppl_4), iv1–iv86 (2018)

    Article  Google Scholar 

  2. Louis, D.N., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  3. Chen, J., McKay, R.M., Parada, L.F.: Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149(1), 36–47 (2012)

    Article  Google Scholar 

  4. Louis, D.N., et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)

    Article  Google Scholar 

  5. Ma, X., Jia, F.: Brain tumor classification with multimodal MR and pathology images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_34

    Chapter  Google Scholar 

  6. Chan, H.-W., Weng, Y.-T., Huang, T.-Y.: Automatic classification of brain tumor types with the MRI scans and histopathology images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 353–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_35

    Chapter  Google Scholar 

  7. Xue, Y., et al.: Brain tumor classification with tumor segmentations and a dual path residual convolutional neural network from MRI and pathology images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 360–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_36

    Chapter  Google Scholar 

  8. Kothari, S., Phan, J.H., Young, A.N., Wang, M.D.: Histological image classification using biologically interpretable shape-based features. BMC Med. Imaging 13(1), 9 (2013)

    Article  Google Scholar 

  9. Chang, H., Zhou, Y., Spellman, P., Parvin, B.: Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: 2013 Proceedings of the IEEE International Conference on Computer Vision, pp. 169–176 (2013)

    Google Scholar 

  10. Zacharaki, E.I., et al.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 62(6), 1609–1618 (2009)

    Article  Google Scholar 

  11. Machhale, K., Nandpuru, H.B., Kapur, V., Kosta, L.: MRI brain cancer classification using hybrid classifier (SVM-KNN). In: 2015 International Conference on Industrial Instrumentation and Control (ICIC), pp. 60–65. IEEE (2015)

    Google Scholar 

  12. Zulpe, N., Pawar, V.: GLCM textural features for brain tumor classification. Int. J. Comput. Sci. Issues (IJCSI) 9(3), 354 (2012)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS, vol. 7065, pp. 29–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25446-8_4

    Chapter  Google Scholar 

  15. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

    Article  Google Scholar 

  16. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  17. Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., Baik, S.W.: Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 30, 174–182 (2019)

    Article  Google Scholar 

  18. Pei, L., Vidyaratne, L., Hsu, W.-W., Rahman, M.M., Iftekharuddin, K.M.: Brain tumor classification using 3D convolutional neural network. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 335–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_33

    Chapter  Google Scholar 

  19. Barker, J., Hoogi, A., Depeursinge, A., Rubin, D.L.: Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med. Image Anal. 30, 60–71 (2016)

    Article  Google Scholar 

  20. Sultan, H.H., Salem, N.M., Al-Atabany, W.: Multi-classification of brain tumor images using deep neural network. IEEE Access 7, 69215–69225 (2019)

    Article  Google Scholar 

  21. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  22. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive, vol. 286 (2017)

    Google Scholar 

  23. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  24. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  25. Northcutt, C.G., Jiang, L., Chuang, I.L.: Confident learning: estimating uncertainty in dataset labels. arXiv preprint arXiv:1911.00068 (2019)

  26. Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: 2020 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  27. Kurc, T., et al.: Segmentation and classification in digital pathology for glioma research: challenges and deep learning approaches. Front. Neurosci. 14(27) (2020). Original Research

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Zhou, Z.-H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1), 44–53 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linmin Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pei, L., Hsu, WW., Chiang, LA., Guo, JM., Iftekharuddin, K.M., Colen, R. (2021). A Hybrid Convolutional Neural Network Based-Method for Brain Tumor Classification Using mMRI and WSI. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics