
Joint Autoregressive and Graph Models
for Software and Developer Social Networks

Rima Hazra1, Hardik Aggarwal1, Pawan Goyal1, Animesh Mukherjee1, and
Soumen Chakrabarti2

1 IIT Kharagpur, Kharagpur, India
to rima@iitkgp.ac.in, hardik8464@gmail.com,

{animeshm,pawang}@cse.iitkgp.ac.in
2 IIT Bombay, Mumbai, India

soumen@cse.iitb.ac.in

Abstract. Social network research has focused on hyperlink graphs,
bibliographic citations, friend/follow patterns, influence spread, etc. Large
software repositories also form a highly valuable networked artifact, usu-
ally in the form of a collection of packages, their developers, dependencies
among them, and bug reports. This “social network of code” is rarely
studied by social network researchers. We introduce two new problems in
this setting. These problems are well-motivated in the software engineer-
ing community but not closely studied by social network scientists. The
first is to identify packages that are most likely to be troubled by bugs
in the immediate future, thereby demanding the greatest attention. The
second is to recommend developers to packages for the next development
cycle. Simple autoregression can be applied to historical data for both
problems, but we propose a novel method to integrate network-derived
features and demonstrate that our method brings additional benefits.
Apart from formalizing these problems and proposing new baseline ap-
proaches, we prepare and contribute a substantial dataset connecting
multiple attributes built from the long-term history of 20 releases of
Ubuntu, growing to over 25,000 packages with their dependency links,
maintained by over 3,800 developers, with over 280k bug reports.

Keywords: Ubuntu packages · software dependency network · bug ur-
gency prediction · developer recommendation.

1 Introduction

A rapidly growing, rich, complex and immensely valuable social network has
garnered surprisingly little attention compared to the WWW hyperlink graph,
follower-followee and retweet/repost/reply networks in social media platforms
etc. This network is formed by software packages, the dependency graph that
links them, their developers, and bug reports and discussions concerning them.
As a case in point, Linux, with its many flavors and adaptations, is a huge
public software repository. It has tens of thousands of packages, connected by

ar
X

iv
:2

10
1.

08
72

9v
1

 [
cs

.I
R

]
 2

1
Ja

n
20

21

dependency and other links. Thousands of developers contribute to these pack-
ages, forming another aspect of the network. In fact, the developer ecosystem
evolves organically, rather than via central command-and-control chains. The
network is highly dynamic, with accurately-maintained trace of evolution along
with detailed logs of bug reports pertaining to different packages. Business re-
alities have made open-source software development viable even for commercial
organizations, with notable examples like Tensorflow, ZFS, Ubuntu, Java, Post-
gres, etc. A comparatively nascent and chaotic version of such self-organization
of software networks can be found on github, gitlab and bitbucket.

In this work we focus on the Ubuntu code repository. Ubuntu, a Linux based
distribution is a collection of many open source software/packages. The project
encourages the community to contribute to the development and maintenance
of one or more packages. For every package, there is a set of developers (often
one) who are responsible for the maintenance of the package and keep track of
all the changes to the package in a changelog3, recording the sequence of bug
fixes or other updates related to the package.

Unlike traditional social network tasks of centrality/prestige computation,
influence or cascade prediction, the social network of software comes with novel
tasks having strong motivation and relevance in the software management com-
munity. Bug urgency ranking: The task is to rank packages that are likely to
be most afflicted by bugs in the immediate future. Since there is no central com-
mand, the developer community has to autonomously discover the trouble spots.
Developer recommendation: For each package, the task is to propose the de-
velopers best suited to contribute in the immediate future. Compared to software
corporations with top-down management, the developer community shows high
levels of churn, making such prediction difficult. We know of no widely used
public domain tools for predicting bug urgency or recommending developers for
a given package. While there are several articles on developer/commenter recom-
mendation [11] in various community question answering sites, to our knowledge,
none of them attempt to build a model to recommend the developers in software
development platforms like Ubuntu.

Our contributions and results —

A new dataset : We contribute a substantial new dataset4 connecting multiple
software and developer artifacts built from the long-term history of 20 releases of
Ubuntu, growing to over 25k packages with their dependency links, maintained
by over 3800 developers, with over 280k bug reports. There are 25k unique nodes
(packages) and 120k dependency links among these packages across the Ubuntu
releases.

Algorithms for bug urgency ranking : We propose autoregressive baselines
that predict future bug urgency as a regression based on recent history, then
augment them with novel ways to incorporate inter-package dependency graph
signals, which result in enhanced ranking accuracy. We are able to achieve high
rank correlation between gold and system rankings, for both the autoregressive

3 http://changelogs.ubuntu.com/changelogs/
4 http://doi.org/10.5281/zenodo.4092623

2

and autoregressive+dependency models. For the most recent distribution (i.e.,
Zesty) in our data set, Spearman’s rank correlation ρ@25 and Kendall’s τ@25
values are respectively 0.582 and 0.451 using only the autoregressive features.
Inclusion of dependency features further improves both the correlation values
(ρ@25 = 0.60 and τ@25 = 0.466). If one considers the full rank list then we
obtain ρ = 0.35, τ = 0.33 for the autoregressive case and ρ = 0.38, τ = 0.35
in case of autoregressive+dependency. For the full rank list the differences in
the results between the autoregressive and autoregressive+dependency schemes
are statistically significant (p < 0.01 for both ρ and τ as per Mann-Whitney U
test [6]).

Algorithms for developer recommendation : In its most basic form, recom-
mending developers for a package may be modeled as predicting a set given a
sequence of past sets [2]. However, our data set has richer signals in both space
(i.e., graph structure) and time, as well as features from bug reports, bug fix
changelogs, etc. Even a simple autoregressive approach is able to take advantage
of these features and outperform baselines. For the most recent distribution,
the Mean Reciprocal Rank (MRR) for the autoregressive approach is ∼0.788
as compared to 0.772 for the best performing baseline. Additional benefits are
also obtained from the dependency relations (MRR ∼0.793). Subject to some
reasonable assumptions, we also compute upper bounds for autorgressive and
autoregressive+dependency schemes as 0.8096 and 0.8445 respectively, which
gives ample scope of improvement in future.

2 Related work

Recommendation systems are nowadays becoming available to assist developers
in various activities — from reusing code [4] to writing effective bug reports [1,8].

Developer recommendation approaches: We witness a growing volume of
literature on developer recommendation for crowdsourced tasks. Mao et al. [7]
employed content-based recommendation techniques to automatically match tasks
and developers for the TopCoder platform. Related work [12] recorded a task-
quitting rate of 82.9% among TopCoder developers. Ye et al. [13] proposed four
problems that limit the effectiveness of existing methods at recommending suit-
able developers. Tunio et al. [10] studied the impact of personality on task se-
lection in crowdsourcing software development.

Package dependency networks: De Sausa et al. [9] presented an analysis
of the package dependency on Debian GNU/Linux. Kikas et al. [5] studied the
structure and evolution of package dependency networks of JavaScript, Ruby,
and Rust ecosystems. Decan et al. [3] showed that experimental results related
to software packages belonging to a single software ecosystem fail to generalise
to other ecosystems because of the diversity of their structure.

We know of no widely used approach that uses package dependency networks
for developer recommendation. Also, we find limited research on Dirichlet based
sampling approach in recommendation and ranking. In this paper, we combine

3

the two paradigms for the two tasks that we solve — bug urgency prediction
and developer recommendation.

3 Dataset

Ubuntu is a free and open-source Linux distribution based on Debian, released
for Desktop, Server and IoT deployment5. It is released every six months, with
long-term support (LTS) releases every two years. Our data consists of three
parts: (i) Ubuntu packages and the dependencies among these packages, (ii) de-
velopers of Ubuntu packages responsible for bug fixes and other updates and
the maintenance of change logs, and (iii) bug(s) associated with each package.
For our experiments we only use 20 non-LTS versions (binary-amd64) published
between April 2004 and April 2017. Dataset details follow in this section.
Ubuntu packages and their dependencies: Each Ubuntu distribution con-
tains a collection of binary packages. Binary packages are made for different
types of architectures like AMD64, i386 etc. For each distribution, we collected
binary packages and their dependencies. The most prevalent form of dependency
between a pair of binary packages is referred to as depends6. A binary package
Pi depends on another binary package Pj if Pj is required to build and install
Pi. “Dependee” denotes a binary package (Pj) on which another binary package
(Pi) depends. In the rest of this paper the dependency network that we refer to
is built from this depends relation.

A source package, on building, may generate a set of binary packages7. E.g.,
the source package “0ad”8 contains the binary packages, “0ad” and “0ad-dbg”.
We consider source packages and their dependencies in our experiments. We
chose source packages instead of binaries since the source packages have a unique
identify with source codes unlike binary packages which may correspond to com-
piled codes from different architectures. We present all our results for the three
most recent distributions – ‘Wily’, ‘Yakkety’ and ‘Zesty’ which have 22799, 24609
and 25648 source packages respectively. An example dependency graph is shown
in Figure 1. The package ‘systemd’ and its dependees ‘libseccomp’, ‘glibc’ and
‘iptables’ are shown in gray in the figure.

The number of “depends” package dependencies across the Ubuntu distribu-
tions are reported in Figure 2 (a) (increases as time progresses).
Developers of Ubuntu packages: The ‘changelog’9 of a source package con-
tains add/remove/update information about the codebase and bugs (resolved
bugs) associated with the package. It also contains the urgency level, name of
the developer and timestamp of that change. Packages evolve at diverse paces,

5 https://www.ubuntu.com/#download
6 There are other types of relations also in the dataset like recommends, suggests and

conflicts which are very infrequent.
7 https://askubuntu.com/questions/357295/what-is-difference-between-binary-and-source-file
8 https://packages.ubuntu.com/source/xenial/0ad

9 E.g., http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad_0.0.
20-1/changelog

4

https://www.ubuntu.com/#download
https://askubuntu.com/questions/357295/what-is-difference-between-binary-and-source-file
http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad_0.0.20-1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/0/0ad/0ad_0.0.20-1/changelog

systemd

glibclibseccomp iptables

Martin PittDimitri John Ledkov

Adam Conrad

Fig. 1: Dependees and developers of the
‘systemd’ package. Gray nodes: software
packages, Red nodes: developers. Solid
and dotted lines represent ‘source de-
pendency’ and ‘contributed by’ relation-
ships, respectively. ‘Dimitri John Led-
kov’ is a developer associated with both
‘systemd’ and its dependee ‘libseccomp’.

Fig. 2: (a) The no. of “depends” de-
pendencies in each Ubuntu distribu-
tion. (b) The average no. of source
packages the developers worked on
across the distributions. (c) The av-
erage no. of bugs per source package
(with non-zero bugs).

and distributions take snapshots at discrete points in time. We have collected
changelogs of source packages and mapped them to Ubuntu distributions. These
change logs allow us to associate every developer with one or more packages for
each distribution. An example of the developer-package relation is illustrated
in Figure 1. In our dataset, we observed that a particular source typically (but
not always) has a single developer in each distribution. Over time the average
number of packages a developer contributes to is reported in Figure 2(b) (shows
an increasing trend).

Bugs associated with Ubuntu packages: Ubuntu releases do not provide a
straightforward way to recover the bugs (along with their meta data) that are
associated with a particular distribution. We therefore collected 280k bugs along
with all available information from Launchpad.10 We next associated a bug with
a particular distribution if that bug had been created within six months from
the release of that distribution. Next we mapped these bugs associated with
a distribution to the corresponding source packages. The number of bugs per
package, averaged over all packages and all distributions, is ∼ 3.4 (considering
all packages that have non-zero reported bugs). The average number of bugs
per package over time is reported in Figure 2(c). The plot shows that in early
versions of Ubuntu, fewer bugs were reported, followed by a sharp increase and
then a final decline. This possibly indicates that as the software became more
complex and popular, the number of bugs reported grew quickly. However, it
settled down at later time point due to the consolidated rectification efforts
made by developers.

10 https://launchpad.net/

5

https://launchpad.net/

4 Notation and preliminaries

We have a set of T distributions of a large software system (such as Ubuntu)
indexed as t ∈ [T] = {1, . . . , T}, where t represents discrete, ordinally compa-
rable time and equivalently, distributions. An example is vivid < wily where
vivid and wily are the Ubuntu distributions. There is a universe of S packages
indexed by s ∈ [S] = {1, . . . , S}. An example is s = glibc. (By ‘packages’, we will
mean “source packages” in the context of Ubuntu. A source package may build
to multiple binary packages, but developers are naturally assigned to source, not
binary packages.) Not all packages s may be present in all distributions t. Pack-
ages can be removed and later restored. For each package s, there is a package
size ps(s, t) which is the sum of the sizes of its binaries at distribution t. There
is a universe of D developers, indexed as d ∈ [D] = {1, . . . , D}. An example is
d = torvalds@linux.org. A developer may contribute to many packages at various
time steps (distributions). Let devs(s, t) ⊂ [D] denote the set of developers as-
sociated with package s at time t. There is a universe of B bug records, indexed
as b ∈ [B] = {1, . . . , B}. One bug record attaches to a single package at a single
distribution. Let bugs(s, t) ⊂ [B] denote the set of bugs associated with package
s at time t. We denote the heterogeneous graph constructed at each time step
t as Gt. Gt comprises two types of nodes — source packages s and developers
d. Edges s → s′ represent ‘source dependency’ relationships. The term “depen-
dent” corresponds to the source package (s) that depends on another source
package. “Dependee” represents the source package (s′) on which the dependent
depends. Edges s → d represent ‘contributed by’ relationships. Figure 1 shows
an illustrative graph fragment at t = zesty for a source package ‘systemd’. Note
that a developer can work on multiple packages at the same time. For example,
‘Dimitri John Ledkov’ is developer of both ‘systemd’ and its dependee package
‘libseccomp’. Let the set of in-neighbors and out-neighbors of the target source
package s at time point t be SIN,t and SOUT,t respectively.

5 Bug urgency ranking

Suppose we observe the evolution of the software ecosystem from time step 1
through t − 1. In other words, we observe Gτ for τ ∈ [1, t − 1] along with
developer and bug sets associated with each package and time step. Now, for
time step t, our goal is to predict |bugs(s, t)| for all packages s. More practically,
we want to sort packages s in decreasing order of |bugs(s, t)| and report the top
ranks to attract the attention of central members of the developer community,
so that they can solicit and allocate more programmer resources. With that
motive in mind, we are generally interested in predicting only the relative bug
density among packages in the next release. While evaluating, we naturally have
access to the gold bugs(s, t), and we can therefore compare the system and gold
rankings using various rank correlation measures.
Pure autoregressive approach : In this approach, we attempt to estimate the
rank of source packages based on the bugs reported at earlier time points. From

6

the bugs information, we computed the number of bugs (|bugs(s, t)|) of each
source package (s) for each time point t. Specifically, we extract autoregressive
features from earlier time points and predict the |bugs(s, t)| for the current time
point. For each source package, we consider two autoregressive features from the
previous two time points, i.e., |bugs(s, t − 1)|, |bugs(s, t − 2)|, ps(s, t − 1) and
ps(s, t).

We also tried to use the same features from even earlier time points. However,
their contribution to the overall prediction performance is negligible compared
to the last two time points and hence they are ignored. We observe that the bug
history of two previous time points always contributes more than the package
sizes in the prediction. Our intuition behind utilizing package size is that, if the
package size changes from the last time point to the current time point, then
the package should contain some new updates. For example, for the package
“systemd” in the “Zesty” distribution, the package size and the number of bugs
are 6.12 MB and 21 respectively. In the previous distribution “Yakkety”, the
package size and number of bugs were 4.43 MB and 15 respectively. This and
other similar observations made us hypothesize that the package size at time
point t might have potential correlation with the number of bugs at t.

Inclusion of network features: We hypothesize that the bugs in a partic-
ular source package could potentially induce bugs in its dependees as well as
dependents. For instance, in distribution “Zesty”, the “systemd” package has 21
bugs whereas in the immediate previous distribution (“yakkety”) this number is
15. The observed rise may be attributed to the very large number of bugs (60)
associated with one of the in-neighbours (“linux”) of “systemd” in the previous
distribution “Yakkety”. Overall, across our full dataset, the Pearson’s correla-
tion between the bugs of a source package at time point t and the bugs of its
in-neighbors/out-neighbors at the previous time point t−1 lies between approx-
imately 0.18 and 0.28. This makes us further confident that positive benefits
could be obtained by considering the previous time point bugs of in-neighbours
and out-neighbours as additional features.

Therefore, along with the autoregressive features, we also use the dependency
features, i.e., the number of bugs of the in-neighbors and the out-neighbors. We
deduce four such features detailed below.

In-neighbor bugs: We use the bugs of the in-neighbor source packages of s from
the previous time point as features. In particular, we consider the following two
features: maxs′∈SIN,t

(|bugs(s′, t− 1)|) and medians′∈SIN,t
(|bugs(s′, t− 1)|) which

are respectively the maximum and the median bug counts of the in-neighbours
of the package s from the previous time point (t− 1).

Out-neighbor bugs: Similarly, as above, we use the bugs of the out-neighbor
source packages of s from the previous time point as features. Here we consider
maxs′∈SOUT,t

(|bugs(s′, t − 1)|) and medians′∈SOUT,t
(|bugs(s′, t − 1)|) which are

respectively the maximum and the median bug counts of the out-neighbours of
the package s from the previous time point (t− 1).

Note that in this case we predict |bugs(s, t)| using both sets of features above
as well as the autoregressive features, and, thereby, rank the source packages.

7

6 Developer recommendation

Suppose we observe the evolution of the software ecosystem from time step 1
through t−1. In other words, we observe Gτ for τ ∈ [1, t−1] along with developer
and bug sets associated with each package and time step. Now, for time step t,
our goal is to predict Ds,t. This time, we are interested in ranking developers by
decreasing suitability for (s, t). Suppose the system returns a ranked order Rs,t
over a suitable subset of developers. From the gold developer set Ds,t, we know
the ‘relevant’ or ‘good’ positions, and can use any ranking evaluation measure
such as MRR.

For this experiment, we consider two polices for creating candidate set of
developers for (s, t). (1) main list: This list contains the developers who worked
on the same source package s in the previous distributions. (2) also use the
dependency list, which contains developers who worked on the neighbors (in-
neighbors, out-neighbors) of the source package s in the previous distributions.
While the first policy goes well with the autoregressive features, the second policy
is used while making use of dependency graph.
Model architecture and inference : Our objective is to rank a set of candidate
developers for each source package and assign the top ranked developer in the test
distro for that source package. Let us fix a source package s. Ds,≤t is developer
set for package s up to time t. The developers could be collected from s’s history
only or accessed via network.“≤ t” may mean [t − K, t] depending on sliding
window width K. Next we train a globally shared model θ for each such horizon
h (see Algorithm 1) We observe Ds,<h for each package s. Next, we predict Ds,h,
incur any loss and update θ. Model θ induces a score on every developer d ∈
Ds,<h. For simplicity call this score θ(d). For all d+ ∈ Ds,h, d− 6∈ Ds,h, we want
θ(d+)� θ(d−). In our evaluation protocol, all gold developer assignment at time
T are used as instances. For evaluating a system at time T alone, apply model
θ on candidate set Ds,<T (note, not T) and predict ranking Rs,T (meaning, sort
by decreasing θ(d)) which is evaluated wrt Ds,T . We categorize the developers
present in candidate set in two clusters (i) positive developers, (ii) negative
developers. Positive developers are the developers who are present in Ds,<h

as well as in Ds,h. Negative developers are the developers who are present in
Ds,<h but may leave for other reasons in Ds,h. Let xs,d+ denote feature vectors
representing developers in the positive developer set. Similarly let xs,d− denote
feature vectors representing developers in the negative developer set. We outline
a top level overview of the model architecture in Algorithm 1.

We employ two different models – (i) Logistic Regression (LR) and (ii) Mul-
tilayer Perceptron (MLP) to estimate θ.
LR model : Our optimisation function is θ(xs,d) = σ(matmul(xs,d,W) + b) and
the loss expression is loss = max(0, (θ(xs,d−)−θ(xs,d+)+1)). Here W and b are
the learnable parameters that we fit using stochastic gradient descent.
MLP model : We use a feedforward neural network with one hidden layer. The
model equations are layer1(xs,d) = tanh(matmul(xs,d,W1) + b1) and θ(xs,d) =
matmul(layer1(xs,d),W2) + b2 respectively. The loss function is loss = cost +
L2 penalty, where the cost = σ(multiply(a, (θ(xs,d−)− θ(xs,d+)− b))) and a =

8

Algorithm 1 Top-level model architecture for developer recommendation.

initialize θ
prepare batch loss expression (see below)
for horizon h = T −K, . . . , T − 1 do

for each package s do
collect Ds,<h

two policies: either same package or via network;
positive devs D+

s,h are Ds,<h ∩Ds,h

negative devs D−s,h are Ds,<h \Ds,h

if D+
s,h 6= ∅ and D−s,h 6= ∅ then

represent each developer d wrt package s as xs,d,

“an instance”
〈
(s, h); {xs,d : d ∈ D+

s,h}, {xs,d : d ∈ D−s,h}
〉

batch loss has been drawn depending on the model chosen (LR/MLP)
call SGD optimizer for one batch to update θ

end if
end for

end for
trained model θ available at this point
for each package s do

collect Ds,<T

prepare feature vectors xs,d for each d ∈ Ds,<T and apply θ(xs,d)
sort candidate ds by decreasing score
evaluate ranking Rs,T wrt gold Ds,T

end for

log(1 + exp(α)), b = log(1 + exp(β)). Thus we maintain a, b > 0 while α and β
are unconstrainted. W1, b1, W2, b2, α and β are the learnable parameters. The
L2 penalty is calculated over all the learnable parameters. We use stochastic
gradient descent.

Feature construction : Next we discuss how to compute the features xs,d.

Pure autoregressive features: In this approach, each developer d for a source pack-
age s at time t is scored based on autoregressive features. From the changelog,
we compute four features — number of high, medium and low urgency level of
packages on which the developer has worked, and the number of bugs closed by
the developer. In addition, we introduce a feature which captures the recency —
that is, whether the candidate developer worked on this package at time t− 1.

Inclusion of network features: Once again, like bug urgency prediction, we lever-
age dependency links to improve developer recommendation. Our hypothesis is
that developers who have recently contributed to one or more of the in(out)-
neighbour packages of a source package should have a greater chance of con-
tributing to the source package itself. This is because, the developers naturally
acquire parts of the necessary skill set to contribute to the source package by hav-
ing already contributed to its closely related packages (in- and out-neighbours)
in the recent past. Thus, in addition to the autoregressive features, we add a set
of dependency features from previous K distributions – (t−1), (t−2), (t−3) and
so on up to (s, t−K). The features are (i) K−1 binary features telling whether
the candidate developer was present in main developer list of (s, t − i) where
i ∈ [2,K], (ii) K binary features telling whether the candidate developer was
present in the neighbor list of (s, t − i) candidate distribution where i ∈ [1,K],
(iii) if the candidate developer is present in the main list of (s, t−1) as well as in
at least one of the neighbor list of (s, t− 2), (s, t− 3), and so on up to (s, t−K),

9

(iv) if the candidate developer is present in the neighbor list of (s, t− 1) as well
as in at least one of the main list of (s, t−2), (s, t−3), and so on up to (s, t−K),
and (v) if the candidate developer is present in the neighbor list of (s, t− 1) as
well as in at least one of the neighbor list of (s, t− 2), (s, t− 3), and so on up to
(s, t−K).

7 Experiments and results

7.1 Bug urgency ranking

Experimental setup: For this experiment, we consider only those source pack-
ages whose bug count in any of previous 10 distributions is non zero. We use
a train-test split of 5:1 to train and evaluate our model. Let us say we have to
predict the bug urgency of all the source packages at time point t. In order to
train the model we use the data for all the source packages that appear in the
K previous time points. For each time point (t − 1) to (t − K) and for every
source package s we calculate the autoregressive and dependency features as
discussed above; accordingly, the training label for each time point is |bugs(s, ·)|
where the · ranges from (t − 1) to (t − K). To train the model, we use the
random forest regressor11. We choose hyperparameters from the following in-
tervals – n estimators: [100, 900], max depth: [4,7], min samples split: [4, 28] ,
min samples leaf: [20, 80], random state: [0, 8] . We used grid search to find the
best parameter combination for both the autoregressive and the dependency
approaches.
Evaluation: For a given time point t, we rank the source packages based on
ground truth |bugs(s, t)| and the predicted |bugs(s, t)|. We use average ranking
method to rank both the score lists. We use Spearman’s rank correlation ρ and
Kendall’s τ for evaluation. We report ρ@25, τ@25 and the ρ, τ for the (quite
large) full rank list12 (see Table 1). We observe that for the most recent time
point (i.e., Zesty) the the correlation values are pretty decent (ρ@25 = 0.582,
τ@25 = 0.451). Use of dependency features bring further benefits (ρ@25 =
0.60, τ@25 = 0.466). In fact, for the full rank list also the results using the
autoregressive+dependency features are quite good and are significantly different
(p < 0.01, Mann-Whitney U test) from those using only autoregressive features.

7.2 Developer recommendation

Upper bound: We first compute an achievable upper bound using the two poli-
cies for creating candidate set as discussed earlier i.e., (i) main list and (ii) main
list + dependency network. If the developer of a source package at test distro

11 One may argue that more complex models like point processes could be a possible
choice. However note that we only have 20 time points and therefore such complex
models cannot be trained sufficiently.

12 The full rank list has 4K packages on average.

10

Distribution
ρ@25 τ@25 ρ τ

(auto, +depn) (auto, +depn) (auto, +depn) (auto, +depn)

Wily Werewolf (0.546, 0.546) (0.407, 0.407) (0.447, 0.454)** (0.367, 0.371)**

Yakkety Yak (0.488, 0.498) (0.331, 0.331) (0.260, 0.276)** (0.218, 0.240)**

Zesty Zapus (0.582, 0.603) (0.451, 0.466) (0.354, 0.380)** (0.328, 0.351)**

Table 1: Spearman’s ρ and Kendall’s τ for bug urgency ranking — autoregressive
only (auto), autoregressive + dependency (+depn). Green cells indicate cases
where dependency features bring in additional benefits. ** indicates that the
values of ρ and τ for (auto) and (auto, +depn) are significantly different (p < 0.01
as per Mann-Whitney U test).

Distribution
Autoregressive Autoregressive + dependency

(auto) (auto+depn)
Our model Majority SeqOfSets Upper Bound Our model Majority Upper Bound

Wily Werewolf 0.748** 0.736 0.703 0.768 0.763++ 0.753 0.844
Yakkety Yak 0.628** 0.607 0.592 0.660 0.642++ 0.631 0.740
Zesty Zapus 0.788** 0.773 0.725 0.810 0.794 0.785 0.844

Table 2: Developer recommendation: MRR values comparing our method with
different baselines. **: Our results are significantly different from both baselines
(p < 0.001 for sequence of sets, p < 0.05 for majority, Mann-Whitney U test).
++: Our results are significantly different from majority baseline (p < 0.01,
Mann-Whitney U test).

is present in the candidate developer set then the rank of the developer is set to 1.

Baselines —
Sequence of Sets: In [2], the authors proposed a stochastic model to capture
the sequential behaviour of different tasks (such as sending emails, academic
collaboration etc.). They proposed two parameters — (i) a correlation parameter
(ii) a vector of recency parameters. The correlation parameter measures the
chance of repeating the earlier set in future. The recency parameters measure
the similarity of a set with the recent one or the oldest one. We directly use their
implementation to generate baseline results. Let us choose the test distribution
at time point t. We use all the previous time points (1, t − 1) for training. For
each source package, we fix a correlation probability [2] and perform Monte-Carlo
simulation runs to predict a developer in each run. We perform 20 such runs and
prepare a ranked list based on the number of occurrences of a developer across
these runs (the larger the number of occurrences of a developer across these runs
the better is her rank). We perform this experiment for correlation probabilities
in the range [0.1, 0.9] in steps of 0.1. We report the results for that correlation
probability where the MRR obtained is maximum.

Majority: For each source package, we rank the developers based on the num-
ber of times they feature in the last K (K = 1, 5, all) distributions (the results
are reported for K = 1 which turned out to be the best among all choices). In
the autoregressive case, for each source package, a developer present the high-
est number of times in last K distributions receives better rank and so on. In

11

case of the autoregressive + dependency approach, for each source package, we
extend our candidate developer set with the developers of its in(out)-neighbors
in previous K distributions. Further, we rank the developers of this set based
on the number of times they worked on the target source package in last K
distributions. Once again, we use the MRR metric to evaluate this approach.
Experimental setup for our method: We use Algorithm 1 to rank the candi-
date developers using autoregressive and autoregressive + network dependency
features. For both the models (i.e., LR and MLP), we try different values of
parameters. Through grid search we set the number of epochs to 10 and the
learning rate to 0.005. The batch size in our experiment is set to 1. The initial
values of α and β are 1 and 0 respectively13. We present the results14 for K = 5.
For paucity of space we only report the results for the best combination of fea-
tures and models; in specific, the LR model with autoregressive features and the
MLP model with autoregressive + dependency features.
Evaluation: The main results are noted in Table 2. We observe that our methods
outperform both the majority and the sequence of sets baseline and are closest
to the upper bound. Further, the inclusion of network features always brings
additional benefits. For all the three distributions, the results from our model
(autoregressive) are better from (a) the sequence of sets baseline (p < 0.001,
Mann-Whitney U test) and (b) the majority baseline (p < 0.05, Mann-Whitney
U test). Further, for ‘Wily’ and ‘Yakkety’, the results from our model (autore-
gressive + dependency) are better than the majority (+ dependency) baseline
(p < 0.01, Mann-Whitney U test).

8 Discussion and conclusion

In this paper we introduced a novel dataset of Ubuntu distributions, motivated
by two important software engineering problems: (a) predicting the urgency of
a bug and (b) recommending a suitable developer for a package. For both the
problems we identify a set of simple autoregressive features which themselves
are found to be performing very well. Augmenting these features with the de-
pendency network features brings additional benefits. In future, we would like to
investigate further into the dataset to identify if patterns of special relationships
exist between developers and bugs and how do these change over time. Discov-
ery of such patterns might allow us to solve the two problems jointly and study
other comparable data sets.

9 Acknowledgement

Soumen Chakrabarti acknowledges support from a Jagadish Bose Fellowship
and a Halepete Family Chair. Animesh Mukherjee acknowledges a Humboldt
Fellowship and the A K Singh Chair. Pawan Goyal acknowledges support from
a Google India AI/ML Research Award.

13 We also tried other values of α and β but they did not affect the results.
14 Changes in the value of K does not affect the final results.

12

References

1. Anvik, J.: Automating bug report assignment. In: Proceedings of the 28th inter-
national conference on Software engineering. pp. 937–940 (2006)

2. Benson, A.R., Kumar, R., Tomkins, A.: Sequences of sets. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. p. 1148–1157. KDD ’18, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3219819.3220100, https:

//doi.org/10.1145/3219819.3220100

3. Decan, A., Mens, T., Claes, M.: On the topology of package dependency networks:
A comparison of three programming language ecosystems. In: Proccedings of the
10th European Conference on Software Architecture Workshops. pp. 1–4 (2016)

4. Janjic, W., Hummel, O., Atkinson, C.: Reuse-oriented code recommendation sys-
tems. In: Recommendation Systems in Software Engineering, pp. 359–386. Springer
(2014)

5. Kikas, R., Gousios, G., Dumas, M., Pfahl, D.: Structure and evolution of pack-
age dependency networks. In: 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). pp. 102–112. IEEE (2017)

6. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. The Annals of Mathematical Statistics 18(1),
50–60 (1947)

7. Mao, K., Yang, Y., Wang, Q., Jia, Y., Harman, M.: Developer recommendation for
crowdsourced software development tasks. In: 2015 IEEE Symposium on Service-
Oriented System Engineering. pp. 347–356. IEEE (2015)

8. Naguib, H., Narayan, N., Brügge, B., Helal, D.: Bug report assignee recommenda-
tion using activity profiles. In: 2013 10th Working Conference on Mining Software
Repositories (MSR). pp. 22–30. IEEE (2013)

9. de Sousa, O.F., de Menezes, M., Penna, T.J.: Analysis of the package dependency
on debian gnu/linux. Journal of Computational Interdisciplinary Sciences 1(2),
127–133 (2009)

10. Tunio, M.Z., Luo, H., Cong, W., Fang, Z., Gilal, A.R., Abro, A., Wenhua, S.:
Impact of personality on task selection in crowdsourcing software development: A
sorting approach. IEEE Access 5, 18287–18294 (2017)

11. Xuan, J., Jiang, H., Zhang, H., Ren, Z.: Developer recommendation on bug com-
menting: a ranking approach for the developer crowd. Science China Information
Sciences 60, 1–18 (2015)

12. Yang, Y., Karim, M.R., Saremi, R., Ruhe, G.: Who should take this task?
dynamic decision support for crowd workers. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ESEM ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2961111.2962594, https://doi.org/

10.1145/2961111.2962594

13. Ye, B., Wang, Y.: Crowdrec: Trust-aware worker recommendation in crowdsourcing
environments. In: 2016 IEEE International Conference on Web Services (ICWS).
pp. 1–8 (2016)

13

https://doi.org/10.1145/3219819.3220100
https://doi.org/10.1145/3219819.3220100
https://doi.org/10.1145/3219819.3220100
https://doi.org/10.1145/2961111.2962594
https://doi.org/10.1145/2961111.2962594
https://doi.org/10.1145/2961111.2962594

	Joint Autoregressive and Graph Models for Software and Developer Social Networks

