
ar
X

iv
:2

10
1.

02
65

5v
1 

 [
cs

.I
R

] 
 7

 J
an

 2
02

1

METRIC LEARNING FOR SESSION-BASED RECOMMENDATIONS

A PREPRINT

Bartłomiej Twardowski1,2

1Computer Vision Center,
Universitat Autónoma de Barcelona
2Warsaw University of Technology,

Institute of Computer Science
bartlomiej.twardowski@pw.edu.pl

Paweł Zawistowski
Warsaw University of Technology,

Institute of Computer Science
pawel.zawistowski@pw.edu.pl

Szymon Zaborowski
Sales Intelligence

January 8, 2021

ABSTRACT

Session-based recommenders, used for making predictions out of users’ uninterrupted sequences of
actions, are attractive for many applications. Here, for this task we propose using metric learning,
where a common embedding space for sessions and items is created, and distance measures dissimi-
larity between the provided sequence of users’ events and the next action. We discuss and compare
metric learning approaches to commonly used learning-to-rank methods, where some synergies ex-
ist. We propose a simple architecture for problem analysis and demonstrate that neither extensively
big nor deep architectures are necessary in order to outperform existing methods. The experimental
results against strong baselines on four datasets are provided with an ablation study.

Keywords session-based recommendations · deep metric learning · learning to rank

1 Introduction

We consider the session-based recommendation problem, which is set up as follows: a user interacts with a given
system (e.g., an e-commerce website) and produces a sequence of events (each described by a set of attributes). Such
a continuous sequence is called a session, thus we denote sk = ek,1, ek,2, . . . , ek,t as the k-th session in our dataset,
where ek,j is the j-th event in that session. The events are usually interactions with items (e.g., products) within the
system’s domain. In comparison to other recommendation scenarios, in the case of session-based recommendations —
information about the user across sessions is not available (in contrast to session-aware recommendations). Also, the
browsing sessions originate from a single site (which is different from task-based recommendations).

The sequential nature of session-based recommendations means that it shares some similarities with tasks found within
natural language processing (NLP), where sequences of characters, words, sentences, or paragraphs are analyzed.
This connection leads to a situation where many methods that are successful in NLP are later applied to the field of
recommendations. One such example is connected with recurrent neural networks (RNNs), which have led to a variety
of approaches applied to recommender systems [1, 2, 3]. Another, one is connected with the transformer model [4]
applied to model users’ behavior [5].

Despite the apparent steady progress connected with neural methods, there are some indications that properly applied
classical methods may very well beat these approaches [6]. Therefore in this paper, we propose combining the classical
KNN algorithm with a neural embedding function based on an efficient neighborhood selection of top-n recommenda-
tions. The method learns embeddings of sessions and items in the same metric space, where a given distance function
measures dissimilarity between the user’s current session, and next items. For this task, a metric learning loss func-
tion and data sampling are used for training the model. During the evaluation, the nearest neighbors are found for
the embedded session. This makes the method attractive for real-life applications, as existing tools and methods for
neighborhood selection can be used. The main contributions of this paper are as follows:

• we verify selected metric learning tools for session-based recommendations,
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• we present a comparison of the metric learning approach and learning to rank, where some potential future
directions for recommender systems can be explored based on the latest progress in deep metric learning,

• we introduce a generic model for recommendations, which allows the impact of different architectures of
session and item encodings on the final performance to be evaluated— which we do in the provided ablation
studies,

• we evaluate our approach using known protocols from previous session-based recommendation works against
strong baselines over four datasets; for the sake of reproducibility and future research1.

2 Related Works

2.1 Session-based Recommendations

Time and sequence models in context-aware recommender systems were used before the deep learning methods
emerged. Many of these approaches can be applied to session-based recommendation problems with some addi-
tional effort to represent time, e.g., modeling it as a categorical contextual variable [7, 8] or explicit bias while making
predictions [9]. The sequential nature of the problem can also be simplified and used with other well-known methods,
i.e., Markov chains [10], or applying KNNs combined with calculating the session items sets’ similarities [11].

The Gru4Rec method [1] has been an important milestone in applying RNNs to session-based recommendation tasks.
The authors focused on sessions solely represented by interactions with items and proposed a few contributions: using
GRU cells for session representation, negative exemplars mining within mini-batch, and a new TOP1 loss function. In
the followup work [12] authors proposed further improvements to loss functions. Inspired by the successful application
of convolutional neural networks (CNNs) for textual data [13], new methods were proposed. One example is the Caser
approach [14], which uses a CNN-based architecture with max pooling layers for top-n recommendations for sessions.
Another, proposed in [15], utilises dilated 1D convolutions similar to WaveNet [16]. The embedding techniques known
from NLP, e.g. skip-gram and CBOW, were also extensively investigated for recommender systems. Methods such
as item2vec and prod2vec were proposed for embedding-based approaches. However recently conducted experiments
with similar approaches, were unsuccessful in obtaining better results than simple neighbourhood methods for session-
based recommendations [17].

2.2 Metric Learning

Metric learning has a long history in information retrieval. Among the early works, the SVM algorithm was used to
learn from relative comparisons in [18]. Such an approach directly relates to Mahalanobis distance learning, which
was pursued in [19] and [20]. Even though new and more efficient architectures emerge constantly, the choice of
loss functions and training methods still plays a significant role in metric learning. In [21], the authors proposed
the use of contrastive loss, which minimizes the distance between similar pairs while ensuring the separation of non-
similar objects by a given margin. For some applications, it was found hard to train, and in [22], the authors proposed
improvement by using an additional data point—anchor. All three data points make an input to the triplet loss function,
where the objective is to keep the negative examples further away from the anchor than the positive ones with a given
margin. Recently more advanced loss functions were proposed: using angular calculation in triplets[23], signal-to-
noise ratio[24], and multi-similarity loss[25]. Still, contrastive and triple losses in many applications have proven to
be a strong baseline when trained correctly[26]. Nevertheless, the high computational complexity of data preparation
(i.e. creating point tuples for training) for contrastive and triplet approaches cannot be solved by changing only the
loss function. These problems are addressed by different dataset sampling strategies and efficient mining techniques.
One notable group here is online approaches, which try to explore relations in a given mini-batch while training, e.g.,
hard mining[26], n-pairs[27], the lifted structure method[28], and weighting by distance[29]. Many combinations of
sampling and mining techniques, along with the loss functions, can be created, which makes a fair comparison hard
[30, 31, 32].

3 Metric Learning vs Ranking Learning for Session-based Recommendations

An ordered output of the session-based recommender in the form of a sorted list for a given input sk is the ranking
rk. In learning-to-rank, as well as recommender systems, the main difficulty is the direct optimization of the output’s
quality measures (e.g., recall, mean average precision, or mean reciprocal rank). The task is hard for many (gradient-
based) methods due to the non-smoothness of the optimized function[33]. This problem can be resolved either by

1https://github.com/btwardow/dml4rec
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minimizing a convex upper bound of the loss function, e.g., SVM-MAP[34], or by optimizing a smoothed version of
an evaluation measure, e.g., SoftRank[35]. Many approaches exist, which depend on the model of ranking: pointwise
(e.g. SLIM[36], MF[37], FM[8]), pairwise (BPR[38], pLPA[39], GRU4Rec[1]), or list-wise (e.g. CLIMF/xCLIMF
[40, 41], GAPfm[42], TFMAP[43]). However, not all are applicable to session-based recommendations. Pairwise
approaches for ranking top-N items are the most commonly used, along with neural network approaches. In the
GRU4Rec method, two pairwise loss functions for training were used — Bayesian Personalized Ranking (BPR)[38]
and TOP-1:

lBPR(sk, ip, in) = − ln
(

σ(ŷsk,ip − ŷsk,in)
)

(1)

lTOP1(sk, ip, in) = σ(ŷsk,in − ŷsk,ip) + σ(ŷ2sk,in) (2)

where sk denotes the session for which ip is a positive example of the next item, and in is a negative one. The ŷsk,i is
a score value predicted by the model for the session sk and the item i. The score value allows items to be compared
and the ordered list rk to be produced, where i.e. ip >rk in, and >rk⊂ I2 denotes total order[38].

In metric learning, the main goal is to align distance with dissimilarity of objects. In [21], the contrastive loss function
for two vectors xi,xj ∈ R

d is given as:

lCont(xi,xj) = yd(xi,xj) + (1− y)max
(

0, d(xa,xn)−m
)

(3)

where y is an indicator variable, 1 if both vectors are from the same class, 0 otherwise, m ∈ R+ is the margin, and
d(xi,xj) is a distance function, e.g., Euclidian or cosine. This loss function pulls similar items (y = 1) and pushes
dissimilar ones. A direct extension — the triplet loss[22] – is defined as follows:

lTriplet(xa,xp,xn) = max
(

0, d(xa,xp)− d(xa,xn) +m
)

(4)

where xp and xn are respectively positive and negative items for a given anchor xa and m ∈ R+ is the margin.

Both contrastive and triplet losses can be used to optimize the goal of the total ordering of objects [44, 38] as induced
by the learned metric. If d(xi,xj) = 0 does not imply xi = xj, d is then a pseudo metric [18], and total order cannot
be induced. If we assume that two functions ϕ(sa) = xa and item ω(ik) = xk are given to embed the session and item
to the same R

d space, where scoring is done by cosine similarity ŷs,i = 1 − d(ϕ(s), ω(i)), then previously defined
ranking losses and metric can be presented as:

lBPR(sk, ip, in) = − ln(σ(dkn − dkp)) , (5)

lTOP1(sk, ip, in) = σ(dkp − dkn) + σ((1 − dkn)
2) , (6)

lTriplet(sk, ip, in) = max(0, dkp − dkn +m) (7)

where dkj = d(ϕ(sk), ω(ij)). A direct connection can be seen: that minimizing each of the loss functions will try
to keep ip closer to sk than in. In all cases, for session-based recommendations, positive items are known, while
the negatives are sampled from the rest of the items (e.g., uniformly or by a given heuristic). In both BPR and TOP1,
a sigmoid σ(x) function is used for optimizing AUC in place of a non-differentiable Heaviside function directly, as
explained in [38]. In TOP1, the authors added a regularization term for negative predictions, which further constrains
the embedding space by keeping negatives close to zero. Metric learning losses use a rectifier nonlinearity (max(0, x))
to prevent from moving data points that are already in order. When considering partial derivative w.r.t distances
between our anchor session sk and positive and negative items, they contribute equally, as was discussed in [25]. If in
a single calculation, more relations are explored (usually inside the same mini-batch), techniques like lifted structures
[28] are used. However, the relations are made between known classes of examples. In learning to rank, each instance
inside a selected set can be ordered, which can be used i.e., to estimate overall ranking, like in Weighted Approximated-
Ranking Pairwise (WARP)[45]. All losses have one more important thing in common: they do not take into account
the relationship between positive and negative items (without the anchor). This is a subject of further improvements
in metric learning methods like [23, 25]. In our solution, we propose using a simple weighting for ranking to address
this shortcoming.

4 Proposed method

We propose a method for session-based recommendations using deep metric learning, where the main input is the
sequence of user’s actions (i.e. the session) sk = {ek,1, ek,2, . . . , ek,t} ∈ S, and items i ∈ I . At the high-level
the network’s architecture can be described as ŷsk,i = d(ϕ(sk), ω(i)), where ϕ and ω denote the session and item
encoders respectively, and ŷsk,i denotes how score for recommending item i in the context of session sk. We decided
on a simple and modular approach in order to investigate the impact of each module on the final outcome — focusing
mainly on the session encoder and different metric loss functions. The only constraint of the model towards the used
network is the used dimensionality of ϕ(sk), ω(i) ∈ R

d for learning a common metric space. The outputs of networks
are normalized and cosine distance functions d(ϕ(sk), ω(i)) are used in final scoring ŷsk,i calculation.
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4.1 Metric Loss for Ranking

4.2 Triplet Loss

The overall triplet loss function is calculated over the prepared training dataset. Assuming that session sk has L
positive items, the final triplet loss function for balanced positive-negative sampling is as follows:

L =
1

|S|

∑

sk∈S

L
∑

j=0

wj max (0, d (ϕ(sk), ω(ip))− d (ϕ(sk), ω(in)) +m) (8)

where weight wj is weight used for particular position. In experiments, we used
√

1/(1 + j) for weighting, which is
expected to change the magnitude of the calculated gradient based on the ranking position. To incorporate the relation
between positives and negatives items we used a swaping technique for a triplet loss, where anchor is exchanged with
positive and the final distance to a negative point is taken as a minimum d′kn = min (dkn, dpn).

4.3 Neighborhood Component Analysis with Smoothing (NCAS) Loss

Based on the NCA loss [46, 47] used commonly in deep metric learning we introduce a version prepared for ranking
session-based recommendations as follows:

p(ij|sk) =
exp (−d (ϕ(sk), ω(ij)))

∑

ij∈Z exp (−d(ϕ(sk), ω(ij)))
(9)

LNCAS =
1

|S|

∑

sk∈S

KLD (p(i|sk)||p
′(i)) (10)

where predictions of true labels inside N -sized mini-batches are smoothed with: p′(i) = (1− ǫ)p(i)+ ǫ/N and Z is a
sampled set containing positive and negative examples for each session sk. The main goal of using this loss function
was to compare the triplet loss to other functions that can be applied for our setting in order to get more insight of its
applicability and results.

4.4 Session Encoder Networks

We use several neural network architectures for the session encoder module. Each one of these networks takes as an
input a sequence of session events, which are clicked items in all used datasets, and encodes it to a vector of embedding
size d. Used network architectures as session encoders go as follows:

• Pooling - this architecture embeds the sequence of clicked items to a vector of size d by pooling the maximum
or average value in each dimension. Inspired by how pre-trained embeddings (e.g. word2vec) are used in
NLP downstream tasks. However, all relations in a sequence are lost.

• CNN based approaches including TextCNN[13], TagSpace[48], Caser[14].

• RNN-based approaches — these use one of the chosen recurrent networks (GRU, LSTM, RNN) to encode
the sequence followed by multiple fully connected layers to generate recommendation scores for individual
items.

4.5 Positive and negative sampling

Training data is prepared from all available users’ sessions S. We want to predict the user’s next action for a given
session sk. Thus, training data preparation tries to enforce this for the model. Each session is split randomly — the
first part is used as an input for the network sk, and the following actions with items are used as positive examples for
that session ip,1, . . . , ip,l. For each l positive, the same number of negatives are sampled randomly. We investigated a
few different strategies in case the session after random split has not enough positive examples. One of the successful
approaches we used is to prepare more positives before training using KNN method. Sampling is done at a beginning
of each training epoch. However, the improved MRR score is counterbalanced by lower items’ coverage.

In other works, the negative sampling is done randomly from all non-positive items, e.g., [8]. From the optimization
perspective [1] took a different approach and sample negative examples from the same mini-batch given to the network.
What relates to online samples mining used in deep metric learning techniques, but here without enforcing a margin
of error like in hard negative mining [26].
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Dataset Source Items Sessions Events

RR/5 Retail Rocket 32K (117K) 64K (380K) 242K (606K)
RSC15/64 2015 RecSys Challange 17K (34K) 118K (1.7M) 495K (6.6M)

SI-T Proprietary e-commerce data #1 2K (2K) 114K (119K) 305K (315K)
SI-D Proprietary e-commerce data #2 3K (3K) 25K (34K) 94K (106K)

Table 1: Experimental dataset stats — (before) and after preprocessing.

1e1

1e3

1e5

N
o
.
o
f
se
ss
io
n
s

RR/64 SI-D

0 50 100 150 200 250

1e1

1e3

1e5

RSC15/64

0 50 100 150 200 250

No. of events in sessions

SI-T

0

20

40

%
o
f
se
ss
io
n
s

RR/64 SI-D

0 25 50 75

0

20

40

RSC15/64

0 25 50 75

% of repeating items in a session

SI-T

Figure 1: Session length distribution (left) and repeating items (right) for each dataset.

5 Experiments

To conduct our experiments, we have followed the procedure utilized by [6], and used five splits for RR and one 64’th
of RSC15 data. For each dataset, we have split the events into individual user sessions and removed the ones that
contained only a single event. Furthermore, in our experiments, we have included only items that occurred at least five
times in the data. A train-test split was prepared by taking the last 10% of sessions. We further evaluated our models
by using common information retrieval and ranking evaluation metrics: mean average precision, mean reciprocal rank,
recall, precision, and hit ratio. All metrics were computed on a list of top 20 recommendations. Following [6] and [1],
in case of MRR@20 and HR@20 only the next item was used as the ground truth. This no look-ahead evaluation can
be considered as a more adequate, when after each of a user’s action a session state is updated and predictions for the
next user’s step is given.

5.1 Datasets and baselines

To conduct the experiments, we used four datasets from the e-commerce domain, which are summarized in Table 1.
Two of these (RR/5 and RSC15/64) are standard benchmarks for session-based recommender systems, while the
remaining ones are smaller, real-world proprietary datasets with data gathered in the early 2020. The difference
between SI-T and SI-T is the category of products for which data were collected. In all datasets users’ events are
represented only by interactions with a products (i.e., view, click), thus ek,l ∼ I .

Fig. 1 (left) presents a histograms of session lengths for the preprocessed datasets, which shows that short sessions
seem to dominate in all datasets. This might be more challenging for methods that focus on the sequential nature of
the users’ data. Furthermore, when analyzing the percentage of recurring items among the sessions presented on Fig. 1
(right), it may be noticed that the session frequently contain multiple interactions with the same products. The data
suggests that users seem to revisit already seen items quite often. However, this also poses an interesting question from
the perspective of recommender systems: should such a system suggest items that a user has already seen in the given
session or only new ones? The answer will depend on the specific use case and whether the system should provide a
more explorative or exploitative user experience.

We compared our Session-based Metric Learning (SML) method against six baseline algorithms. Starting from the
simplest ones, POP denotes a simple popularity-based algorithm, which simply recommends the top-n most popular
items. SPOP recommend items already seen in the session ordered by number of occurrences and fills the rest with
popular ones. This recommender performs well when predictions are expected to be repetitions. The KNN algorithm
was the basis of the next two baseline methods: SKNN and VSKNN. The SKNN approach for a given session recommends
the top-n most frequent items among the K-most similar sessions from the training data, for which a cosine distance is
used. The VSKNN[6] approach works similarly, however it puts more weight on more recent events in a given session.
The last two methods include a Markov first-order recommender reported as MARKOV-1 and GRU4Rec+[12].
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5.2 Implementation details

All the variations of the proposed model were implemented using the PyTorch[49] library and trained in an end-to-end
fashion with Adam optimizer using lr = 0.001, for max 150 epochs (early stop after lowering lr three times when
improvement on 5% validation data is lower than 0.5%) with batch size of 32, and 8 positive/negative samples per
session. Max session length was 15 for RR/5 and RSC15/64, and 8 for SI — this plays an important role for CNNs
where all sessions are padded to exactly the same size. For item embedding simple feed-forward network with tanh
activation is used. The embedding dimension is set to 400 for all the methods. The margin value m for triplet loss
is set to 0.3. Smoothing parameter for NCAS is set to ǫ = 0.3. For the RNN encoder a GRU cells are used with, 400
dimensions. For the TextCNN convolution filters of sizes 1, 3, 5 were used.

5.3 Performance comparison

5.4 Evaluation

In Table 2 we present the results obtained during the experiments conducted with the proposed method and compare
them against the baselines. Not all combinations of session encoders with loss function are presented, only the most
promising or interesting ones from the future research perspective (e.g., NCAS for RSC15/64 and RR/5).

The modification introduced by VSKNN to the non-weighted version of the method (i.e., SKNN) seems to be effective
for all the datasets, thus making VSKNN a strong baseline indeed. Nevertheless, in some cases (like RR/5), the simpler
SKNN method still obtains better results. Dataset specifics and used metrics play an important role here, as can be seen
in Fig. 1 (right)—RR/5 in comparison with other datasets (especially RSC15/64) contains more repeating items. If we
place them at the beginning of our recommendation and fill up the rest with the most popular items, we can receive
high MRR@20 values. However, the practical usefulness of such recommendations can be questionable.

The low results of MARKOV-1 for all datasets show that a simple association of the item and the next following action
is not enough to obtain good results. Extracting additional information from entire sequences is needed to improve
recommendations, which is the basis on which the sequential modeling with GRU4Rec+ method stands. Still, in most
cases, it is less accurate in the meaning of used metrics than the simple heuristic of VSKNN. One possible explanation
is that the VSKNN model additionally incorporates recency in the scoring function. We can consider that as a simply
encoded contextual information about when the sequence occurred. This information is not used in other models.
When scoring sequences within short periods of time this may not introduce a big difference, but becomes important
as the time difference increases, as e.g., some trends arise, and others fade out.

From the overall results, our SML family methods are the best for two datasets, the proprietary SI-T and the open
available RSC15/64. For SI-T the proposed triplet loss function seems to be the right choice, wherein the case of
RSC15/64, training with NCAS is more stable and is giving overall better results. This situation can be caused by
far bigger inventory size and number of events in this dataset. Moreover, on SI-D and RR/5 our methods position
themselves as the second-best ones with a minimal margin to kNN based methods, VSKNN and SKNN, respectively. For
SI-D only the PREC@20 is lower, due to the fact of far better results of SKNN (which we double-checked for the
correctness with such good results for both SI datasets). The Retail-Rocket dataset presents consistent results with [6],
where many new methods cope to beat SKNN. With SML-MaxPooling-NCAS, we get close to the position of being the
leader.

Between the investigated encoders, we can observe from the results that a simple max-pooling performs well and falls
very close to the best score for SI-* datasets. Intuitively, GRU and CNN based methods should be better in encoding
longer sequences of actions, like RSC15/64 and RR/5 (see Fig. 1 (left)). However, this proved to be true only for
RSC15/64 results, where CNN and RNN based methods are among the best ones. For RR/5 simple pooling with the
proposed NCAS loss function is the best one from the SML method family. Additionally, in practical terms, CNN-
based models can be preferred from GPU utilization perspective, as the architecture and many libraries are optimized
for computer vision and image processing.

5.5 Coverage and popularity bias

Similar to [17, 6] we investigated the distribution of predicted items for the selected approaches. Interestingly, our
metric learning based methods usually give wider spectrum of recommended items. Even checking simple statistic of
overall unique items being recommended, for SI datasets our methods return almost twice as much unique items as
VSKNN method (666 to 1,542 and 1,522 to 2,542 for a sample run, all items 2k, 3k respectively, see Table 1), while for
RR/5 and RSC the difference is not so big (16,334 to 19,063, 12,232 to 11,216 for a sample run).
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Dataset Method MAP PREC ▽REC HR MRR

SI-T

SML-TextCNN-Triplet 0.0407 0.0526 0.7463 0.8525 0.6050

SML-RNN-Triplet 0.0407 0.0526 0.7462 0.8523 0.6015

VSKNN 0.0410 0.0619 0.7455 0.8511 0.6088

SML-MaxPool-Triplet 0.0400 0.0518 0.7368 0.8414 0.5974

SML-MaxPool-NCAS 0.0389 0.0504 0.7195 0.8246 0.5857

SML-RNN-NCAS 0.0389 0.0503 0.7193 0.8248 0.5910

SML-TextCNN-NCAS 0.0386 0.0499 0.7152 0.8206 0.5844

SPOP 0.0336 0.0437 0.6384 0.7317 0.5724

SML-TagSpace-Triplet 0.0335 0.0435 0.6352 0.7311 0.5602

GRU4Rec+ 0.0318 0.0463 0.5948 0.7578 0.5437

SKNN 0.0293 0.4524 0.5609 0.6533 0.5640

POP 0.0192 0.0257 0.3600 0.3954 0.1369

MARKOV-1 0.0376 0.0218 0.2433 0.2875 0.1965

SI-D

VSKNN 0.0394 0.1228 0.6499 0.7484 0.4483

SML-RNN-Triplet 0.0374 0.0536 0.6401 0.7350 0.4468

SML-TextCNN-Triplet 0.0371 0.0531 0.6375 0.7334 0.4445

SML-MaxPool-NCAS 0.0360 0.0515 0.6215 0.7185 0.4379

SML-RNN-NCAS 0.0355 0.0509 0.6153 0.7130 0.4358

SML-TextCNN-NCAS 0.0346 0.0496 0.6033 0.6990 0.4171

SKNN 0.0350 0.1502 0.5942 0.6878 0.4321

SML-MaxPool-Triplet 0.0340 0.0489 0.5929 0.6822 0.3718

SML-TagSpace-Triplet 0.0309 0.0445 0.5470 0.6261 0.3733

SPOP 0.0285 0.0406 0.5180 0.5853 0.4263

GRU4Rec+ 0.0332 0.0680 0.4966 0.6450 0.3043

MARKOV-1 0.0348 0.0515 0.2582 0.3038 0.1741

POP 0.0122 0.0197 0.2040 0.2248 0.0655

RSC15/64

SML-RNN-NCAS 0.0358 0.0639 0.5248 0.6557 0.2884

SML-MaxPool-NCAS 0.0355 0.0634 0.5213 0.6502 0.2841

SML-TextCNN-NCAS 0.0351 0.0627 0.5145 0.6393 0.2766

SML-RNN-Triplet 0.0348 0.0623 0.5126 0.6371 0.2824

VSKNN 0.0386 0.0928 0.5009 0.6961 0.2879

SML-MaxPool-Triplet 0.0337 0.0607 0.4975 0.6143 0.2680

SKNN 0.0363 0.0881 0.4780 0.6423 0.2522

GRU4Rec+ 0.0285 0.0721 0.4009 0.6528 0.2752

SML-TextCNN-Triplet 0.0244 0.0462 0.3793 0.4615 0.1389

SML-TagSpace-Triplet 0.0218 0.0416 0.3398 0.4082 0.1396

MARKOV-1 0.0333 0.0446 0.3011 0.3912 0.1771

SPOP 0.0164 0.0318 0.2879 0.3464 0.2205

POP 0.0063 0.0129 0.1075 0.1264 0.0292

RR/5

SKNN 0.0283 0.0532 0.4704 0.5788 0.3370

SML-MaxPool-NCAS 0.0273 0.0443 0.4673 0.5692 0.3340

VSKNN 0.0278 0.0531 0.4632 0.5745 0.3395

SML-RNN-NCAS 0.0270 0.0437 0.4609 0.5600 0.3379

GRU4Rec+ 0.0272 0.0502 0.4559 0.5669 0.3237

SML-RNN-Triplet 0.0270 0.0456 0.4542 0.5560 0.3605

SML-TextCNN-NCAS 0.0264 0.0427 0.4516 0.5476 0.3197

SML-MaxPool-Triplet 0.0245 0.0392 0.4357 0.5243 0.3451

SPOP 0.0201 0.0331 0.3773 0.4614 0.3985

SML-TextCNN-Triplet 0.0183 0.0293 0.3278 0.3988 0.2156

SML-TagSpace-Triplet 0.0117 0.0192 0.2321 0.2817 0.2397

MARKOV-1 0.0183 0.0428 0.1557 0.1964 0.1162

POP 0.0009 0.0020 0.0181 0.0227 0.0058

Table 2: Results obtained during the experiments. The baseline SKNN, VSKNN and GRU4Rec+ values for RR/5
and RSC15/64 are taken from supplementary materials to [6]. Best results for each measure–dataset pair are in
boldface, while the second bests are underlined; ▽ indicates the sort column. The SML naming convention is:
SML-SessionEncoder-LossFunction, with: RNN and MaxPool denote encoders described in 4.4, and three loss
functions: Contrastive, Triplet and smoothed NCA — NCAS.

5.6 Ablation Study

To verify the impact of each component in our proposed solution, we run a series of experiments on SI-T dataset for
two encoders: RNN and MaxPool, enabling each improvements one by one. The results with REC@20 and MRR@20
are shown in Table 3.

One of the first sampling methods evaluated with SML was a simple sliding window-based technique. For a defined
number of events (padded if necessary), we take only the next following items as positive examples, and negative ones
are randomly sampled. We quickly switched to sampling presented in section 4.5, as we notice that the windowing
technique is not reflecting how the system is utilized in real use cases. Specifically, for various sub-sequences from
the beginning of a session, predictions are also required, disregarding the sliding window size. As the next step, we
evaluated the impact of the inner elements from triplet loss, like normalization (which is very common), margin usage
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Comm. RNN MaxPool

Emb. Sampler Loss ▽REC@20 MRR@20 REC@20 MRR@20

True Pos–Neg N-M 0.7435 0.5973 0.7402 0.5978
True Pos–Neg N 0.7377 0.5973 0.7340 0.5932
True Pos–Neg N-M-S 0.7371 0.5908 0.7359 0.5888
False Pos–Neg N 0.6565 0.5746 0.6508 0.5727
False Pos–Neg N-M 0.6341 0.5783 0.6192 0.5767
False Pos–Neg N-M-S 0.6192 0.5678 0.6247 0.5796
False SW N-M-S 0.0022 0.0006 0.0525 0.0191

Table 3: Ablation results obtained for the RNN and MaxPool session encoders. Columns labels in order: (1)
True/False is common embedding was used; (2) Sampler: SW - sliding window, Pos-Neg - session positive neg-
ative sampling as described in sec. 4.5; (3) Triplet loss with: N - L2 normalization, M - 0.3 margin used, S - swaping
anchor–session with positive item. Resultes are sorted by REC@20.

(which for some datasets are set to very small values), and swapping of anchor and positive elements. To our surprise,
swapping is not always giving good results for a session-based recommendations setting.

A crucial role for improving our model was the use of common embeddings for both session encoder ϕ(sk) and
items encoder ω(ij) for the prediction. This lowered the number or all parameters to train and positively influenced
the overall results. We think that even further improvements can be made to the proposed method by a more global
network parameters search. But this was out of scope of our computational possibilities. Thus, we constrained some
of the network’s hyper-parameters that are related (e.g., GRU hidden state dimension and following feed-forward
network dimension to be the same).

6 Conclusions

In this paper, we have presented a novel approach to session-based recommendations that utilizes concepts from the
field of metric learning. The proposed method has a clear and modular architecture that combines session and item em-
beddings with a metric loss function. Each of these elements may be individually tweaked and thus defines a potential
direction for further research. We test our approach against independent results obtained for strong baseline methods
using a well-established evaluation procedure and receive state-of-the-art results. The analysis is also extended by
ablation studies, which confirm that the proposed solution does not have unnecessary elements.

Our approach’s main advantage is a modular design and extensibility that makes it possible to tweak its components
to best match the dataset or incorporate some prior knowledge. Moreover, the fact that SML is based on principles
originating from metric learning, many improvements from that field can still be transferred and evaluated for session-
based recommendations. From usage perspective, our approach can be attractive in combination with existing pipelines
(KNN recommendations) and libraries (optimized CNN).

We can identify two main weaknesses of our method. Firstly, sampling has a significant impact on the results both in
terms of quality and computational efficiency, so careful GPU usage and memory management is required. Secondly,
many improvements that can be taken for granted within computer vision do not necessarily improve the final model
when combined with other elements for session-based recommendations, which was presented in the ablation study.

Although we achieved promising results with the current method, this work only touched the subject of applying metric
learning to session-based recommendations, and much more is to be explored. Apart from the already mentioned
embeddings, the positive/negative sampling strategy used during the training phase seems to deserve more attention.
Based on good experimental results achieved by some baselines, an introduction of a missing users’ actions time
context into session-based recommendation also seems worth exploring. Further investigation of improvements in the
deep metric learning field can result in even better session-based recommendations, and similar synergy can be found,
like in the case of NLP.
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