Skip to main content

GCE: Global Contextual Information for Knowledge Graph Embedding

  • Conference paper
  • First Online:
  • 2356 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Abstract

Most existing large-scale knowledge graphs are suffering from incompleteness, and many research efforts have been devoted to the task of knowledge graph completion. One popular approach is to learn low-dimensional representations for all entities and relations, and then employ them to infer new facts. However, we find that most of the current knowledge graph embedding models are lack of suitable strategy to utilize global contextual information. In this paper, we propose an embedding model, named GCE, to explore the capability of global contextual information to the task of knowledge graph completion. In GCE, we carefully design a global contextual information module with the attention mechanism. This module could aggregate global contextual information adaptively, thus enhancing feature representation for knowledge graph completion. To demonstrate the effectiveness of our proposed GCE, we conduct extensive experiments on two benchmark datasets FB15k-237 and WN18RR. Experimental results show that GCE achieves competitive results compared with the existing state-of-the-art embedding models on both datasets. The results validate our central hypothesis – that global contextual information is beneficial to knowledge graph completion performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bast, H., et al.: Semantic search on text and knowledge bases. Found. Trends Inf. Retrieval® 10(2–3), 119–271 (2016)

    Article  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795 (2013)

    Google Scholar 

  6. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  7. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, pp. 833–851. Springer, Cham (2018)

    Google Scholar 

  8. Cho, K., Courville, A., Bengio, Y.: Describing multimedia content using attention-based encoder-decoder networks. IEEE Trans. Multimedia 17(11), 1875–1886 (2015)

    Article  Google Scholar 

  9. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Dietz, L., et al.: Utilizing knowledge graphs for text-centric information retrieval. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1387–1390. ACM (2018)

    Google Scholar 

  11. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  12. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Li, Q., Cao, Z., Zhong, J., Li, Q.: Graph representation learning with encoding edges. Neurocomputing 361, 29–39 (2019)

    Article  Google Scholar 

  15. Li, Q., Dong, J., Zhong, J., Li, Q., Wang, C.: A neural model for type classification of entities for text. Knowl.-Based Syst. 176, 122–132 (2019)

    Article  Google Scholar 

  16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  18. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilingual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)

    Google Scholar 

  19. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  20. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2019)

    Google Scholar 

  21. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 327–333 (2018)

    Google Scholar 

  22. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 2180–2189 (2019)

    Google Scholar 

  23. Nickel, M., LMU, I., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML, vol. 11, pp. 809–816 (2011)

    Google Scholar 

  24. Nickel, M., et al.: Holographic embeddings of knowledge graphs. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961 (2016)

    Google Scholar 

  25. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  26. Shahzad, M., et al.: Virtual data integration of heterogeneous genomic biological knowledge base. Bahria Univ. J. Inf. Commun. Technol. (BUJICT) 8(2) (2015)

    Google Scholar 

  27. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3060–3067 (2019)

    Google Scholar 

  28. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)

    Google Scholar 

  29. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  30. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080 (2016)

    Google Scholar 

  31. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.: Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence, pp. 3009–3016. AAAI Press (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5694

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  33. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313. ACM (2019)

    Google Scholar 

  34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  35. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  36. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  37. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 515–526. ACM (2014)

    Google Scholar 

  38. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  39. Yih, W.t., Richardson, M., Meek, C., Chang, M.W., Suh, J.: The value of semantic parse labeling for knowledge base question answering. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 201–206 (2016)

    Google Scholar 

  40. Yuan, Y., Wang, J.: OCNet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)

  41. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. ACM (2016)

    Google Scholar 

  42. Zhang, H., et al.: Context encoding for semantic segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)

    Google Scholar 

  43. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017)

    Google Scholar 

  44. Zhong, J., Wang, C., Li, Q., Li, Q.: A new graph-partitioning algorithm for large-scale knowledge graph. In: Gan, G., Li, B., Li, X., Wang, S. (eds.) ADMA 2018. LNCS (LNAI), vol. 11323, pp. 434–444. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05090-0_37

    Chapter  Google Scholar 

  45. Zhu, G., Iglesias, C.A.: Sematch: semantic similarity framework for knowledge graphs. Knowl.-Based Syst. 130, 30–32 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Key Research and Development Program of China (2017YFB1402400 and 2017YFB1402401), the Key Research Program of Chongqing Science and Technology Bureau (cstc2020jscx-msxmX0149), the Key Research Program of Chongqing Science and Technology Bureau (cstc2019jscx-mbdxX0012), and the Key Research Program of Chongqing Science and Technology Bureau (cstc2019jscx-fxyd0142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Zhong, J. (2021). GCE: Global Contextual Information for Knowledge Graph Embedding. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics