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1 Royal Holloway, University of London, Egham, UK
dave@cs.rhul.ac.uk

2 IRIT, University of Toulouse, Toulouse, France
cooper@irit.fr

3 University of Oxford, Oxford, UK
{peter.jeavons,standa.zivny}@cs.ox.ac.uk

Abstract. A pattern is a generic instance of a binary constraint sat-
isfaction problem (CSP) in which the compatibility of certain pairs of
variable-value assignments may be unspecified. The notion of forbidden
pattern has led to the discovery of several novel tractable classes for
the CSP. However, for this field to come of age it is time for a theo-
retical study of the algebra of patterns. We present a Galois connec-
tion between lattices composed of sets of forbidden patterns and sets
of generic instances, and investigate its consequences. We then extend
patterns to augmented patterns and exhibit a similar Galois connection.
Augmented patterns are a more powerful language than flat (i.e. non-
augmented) patterns, as we demonstrate by showing that, for any k ≥ 1,
instances with tree-width bounded by k cannot be specified by forbid-
ding a finite set of flat patterns but can be specified by a finite set of
augmented patterns. A single finite set of augmented patterns can also
describe the class of instances such that each instance has a weak near-
unanimity polymorphism of arity k (thus covering all tractable language
classes).We investigate the power of forbidding augmented patterns and
discuss their potential for describing new tractable classes.
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1 Introduction

The CSP (Constraint Satisfaction Problem) is a classical abstract framework for
the modelling of finite-domain constrained assignment problems [8,32]. Although
first inspired by applications in computer vision and artificial intelligence, it’s
generic nature has allowed it to become a programming paradigm in its own
right used in, for example, scheduling, product configuration, planning and bio-
informatics. It is well known that the CSP is NP-complete and remains so even
when restricted to binary constraints since all instances have an equivalent dual
instance which is binary [22,40].

An interesting avenue of theoretical research on CSPs consists in the charac-
terisation of tractable subproblems defined by placing a restriction on the type
of constraints that can occur (the constraint language) and again it is known
that it is possible to limit attention to languages of binary relations [5,10]. A
major advance towards the recent characterisation of tractable constraint lan-
guages [3,41] was the algebraic approach based on the study of pointwise closure
operations of constraint relations, known as polymorphisms, and the identities
satisfied by these polymorphisms [1,4]. Of particular interest is the Galois con-
nection between (sets of) polymorphisms and (sets of) relations [27]. In parallel,
tractable subproblems of the CSP based on restrictions on the (hyper)-graph of
constraint scopes (the constraint (hyper)graph) were also characterised [26].

In order to define new classes, we need to go beyond placing restrictions on
constraint languages or on the structure of the constraint (hyper)-graph. A natu-
ral way of defining sets of instances is to consider properties of the microstructure
of binary CSP instances [30]. A pattern can be seen as a partial microstructure
(i.e. a binary CSP instance in which the compatibility of some assignments may
be left undefined) or, more abstractly, as a graph with vertices labelled by names
of variables and edges which may be positive or negative. Defining sets of binary
CSP instances by forbidding patterns has led to the discovery of novel tractable
classes [9,18]. For example, in each of the following cases, forbidding a simple 3-
variable pattern defines a tractable class of binary CSP instances which strictly
generalises a known tractable class:

– The Broken-Triangle Property (BTP) [16] includes all instances whose con-
straint graph is a tree. It has also led to the discovery of interesting reduc-
tion operations [14] and has been extended in different ways to define larger
tractable classes [12,35–37].

– The Joint-Winner Property (JWP) [17] includes all CSP instances defined by
a single All-Different constraint [38] together with arbitrary unary constraints.

– The Extended Max-Closed (EMC) class [19] includes all binary max-closed
instances [29]. The stable marriage problem [31] is just one example of a class
of problems that can be expressed as binary max-closed CSPs [25].

– The T4 pattern [15] generalises the ZOA language class [13] which is itself a
generalisation of 2SAT. Three other patterns have also recently been shown
to define tractable classes that generalise 2SAT [7].
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In this paper we initiate the study of the underlying theory of forbidden
(sets of) patterns, an essential foundation on which to build a characterisation
of all tractable classes defined by forbidden (sets of) patterns. We begin by
studying what we call flat patterns before studying augmented patterns with
extra structure, such as partial orders on variables or domain values. Adding
such structure is not only essential to define certain hybrid classes such as BTP
[16] and EMC [19], but, as we will show in Sect. 6, also allows us to define
(families of) polymorphisms [28] and bounded tree-width [20] within the same
framework.

For both flat and augmented patterns, we exhibit a Galois connection
between sets of patterns and sets of instances. In each case, we investigate the
tractability consequences of the Galois connection, including the possibility of
defining new tractable classes by combination of known tractable classes via the
lattice operations. We notably show that tractable classes form a sublattice.

2 Definitions and Notation

We assume that there is a countable collection of variables X and a countable
domain D of values. A variable-value pair (x, a), representing the assignment of
value a ∈ D to variable x ∈ X , is known as a point. A flat pattern (or simply a
pattern) P = 〈AP , ρP 〉 is a subset AP of X ×D equipped with a (partial) function
ρP from the pairs of points (x, a), (y, b) of P such that x �= y to {negative,
positive}. Thus P consists of a set of variable-value assignments (x, a) together
with a set of negative and positive edges representing the compatibility of pairs
of assignments. In figures we represent negative edges by dashed lines, positive
edges by solid lines and points corresponding to assignments to the same variable
are grouped into ovals. Three patterns P1, P2, P3 are shown in Fig. 1.

Fig. 1. Examples of the occurrence of a pattern in another pattern: P1 → P2, P2 →
P1, P1 → P3, P2 → P3.
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We give a recursive definition of connectedness. Two points (x, a), (y, b) in a
pattern P are connected if x = y or ρP ((x, a), (y, b)) ∈ {negative, positive} or if
(x, a), (y, b) are both connected to some point (z, c) of P . Clearly, each pattern
has a decomposition into connected components according to this definition of
connectedness.

A completely specified binary CSP instance (or simply an instance) is a pat-
tern I = 〈AI , ρI〉 in which the function ρI is total, i.e. the compatibility of
each pair of variable-value assignments (to distinct variables) is specified. Given
an instance I on n variables, a solution to I is a clique of positive edges of
size n, which corresponds to a pairwise-compatible assignment of values to vari-
ables. The question associated with an instance is the existence of a solution.
An instance I is arc consistent if for all points (x, a) of I and all variables y �= x
of I, (x, a) has a support at y, i.e. ∃b ∈ D such that {(x, a), (y, b)} is a positive
edge in I.

A pattern P = 〈AP , ρP 〉 occurs in pattern Q = 〈AQ, ρQ〉 if there is a mapping
f from AP to AQ which respects variables, maps negative edges to negative edges
and positive edges to positive edges, i.e.

1. f(x, a) = (u, c) and f(x, b) = (v, d) implies that u = v.
2. f(x, a) = (u, c), f(y, b) = (v, d) and ρP ((x, a), (y, b)) ∈ {negative, positive}

implies that u �= v and ρP ((x, a), (y, b)) = ρQ((u, c), (v, d)).

We use the notation P → Q to denote that P occurs in pattern Q (and P � Q
if it does not). It is easy to see from its definition that occurrence is transitive:
P → Q and Q → R implies P → R. We consider two patterns P,Q to be
equivalent if P → Q and Q → P : we write P ≈ Q. For example, patterns P1
and P2 in Fig. 1 are equivalent; we notably have P1 → P2 since (x, a), (y, b)
can both map to (z, c). Clearly, we have P2 → P3, and then, by transitivity,
P1 → P3. For simplicity of presentation, throughout this paper, we will talk
about patterns rather than equivalence classes of patterns.

Each pattern P defines a corresponding set of instances in which P does not
occur. For example, the pattern P3 of Fig. 1 defines a set of instances which
includes all binary CSP instances with Boolean domains, since if P3 → I then
the points (v, d), (v, e), (v, f) must map to three distinct values for the same
variable in I, due to the positive and negative edges in P3.

Note that in previous work, it has sometimes been convenient to assume
that when P occurs in Q, distinct variables of P map to distinct variables of Q
[11,15,19]. However, to establish a Galois connection for flat patterns, we require
a looser definition of occurrence in which two or more variables of P may map to
the same variable in Q. To impose the stricter definition of occurrence (inducing
an injective mapping of variables of P ), it suffices, for each pair of distinct
variables x, y, to add two new points (x, a), (y, b) to AP and an extra dummy
positive edge between points (x, a), (y, b) in P ; this prevents x, y mapping to the
same variable in Q (and only changes the semantics of P in a trivial way). A
more elegant solution (in order to impose an injective mapping of variables) is
to augment the patterns with a not-equal-to relation between variables which is
possible in the framework of augmented patterns discussed in Sect. 6.
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We consider sets S of patterns. These sets will usually be finite, indeed, often
a singleton. When forbidden, a set S of patterns defines a set of instances (those
sets of instances in which none of the patterns in S occurs). Such sets T of
instances are hereditary in the sense that (I ∈ T ) ∧ (I ′ ⊆ I) =⇒ (I ′ ∈ T ), where
I ′ ⊆ I means (AI′ ⊆ AI) ∧ (ρI′ = ρI |AI′ ). Many, but not all, classes of interest
are hereditary. For example, for any k, the set of instances whose tree-width is
bounded by k is hereditary. On the other hand, the set of instances which is
arc-consistent is not hereditary, since a value which has a support at another
variable in an instance I will not necessarily have a support in I ′ ⊂ I. Thus
forbidden flat patterns alone cannot express any class of instances which requires
arc consistency (or a higher level of consistency) [36]. Nevertheless, we will see in
Sect. 6 how a combination of augmented patterns and filters on instances provides
a very expressive language in which to define classes on instances, allowing us
to express such classes of instances.

In order to obtain a Galois connection we consider sets of generic instances,
where a generic instance can be viewed as a partially-specified instance and is,
in fact, again just a pattern. However, the lattice structure on sets of patterns
is different depending on whether we view these patterns as partially-specified
instances or as forbidden sub-instances. When defining tractability of sets of
generic instances we filter instances keeping only those that are completely spec-
ified.

Definition 1. A set T of generic instances is tractable if there is a polynomial-
time algorithm which decides all completely-specified instances in T . A set S of
forbidden patterns is tractable if the corresponding set of instances in which none
of the patterns in S occur is tractable.

To define lattices of (sets of) instances and (sets of) patterns, we also require
the following operation on patterns: if P,Q are patterns, then P + Q is a single
pattern consisting of (copies of) the two patterns P and Q (without any common
points and without any edges between P and Q). We call this the juxtaposition
of the two patterns P and Q. Observe that P + P ≈ P (since P + P → P
follows from the definition of occurrence which allows us to map the two copies
of P to P ). If S1, S2 are sets of patterns, then S1 + S2 is the set of patterns
{P + Q | P ∈ S1 ∧ Q ∈ S2}.

We also require another operation on pairs of patterns, which can be seen as
the greatest lower bound of the two patterns. If P,Q are patterns, then P × Q
is a single pattern built by forming the juxtaposition of all patterns R such that
(R → P )∧ (R → Q). We say that such patterns R are common factors of P and
Q. We only include patterns R which are maximal in the sense that there is no
R′ �≈ R such that R → R′ and (R′ → P ) ∧ (R′ → Q). Observe that including
only maximal R, ensures that we have P ×P ≈ P . The operation × is illustrated
in Fig. 2. In this example, the patterns P and Q have only two maximal common
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P Q

P ×Q

Fig. 2. The operation P × Q.

factors (modulo the equivalence relation ≈) and P × Q is the juxtaposition of
these two common factors. Note that P1 and P2 (shown in Fig. 1) are both
common factors of P and Q, but since P1 ≈ P2 we only need to include one of
these patterns in P × Q. If S1, S2 are sets of patterns, then S1 × S2 is the set of
patterns {P × Q | P ∈ S1 ∧ Q ∈ S2}.

The following lemmas provide a logical interpretation of the + and × oper-
ations on patterns.

Lemma 1. For all patterns P1, P2, I, we have P1 +P2 � I if and only if (P1 �

I ∨ P2 � I)

Proof. For all patterns P1, P2, I, P1+P2 → I if and only if (P1 → I ∧P2 → I) by
the definition of P1+P2. By contraposition, for all patterns P1, P2, I, P1+P2 � I
if and only if (P1 � I ∨ P2 � I).

Lemma 2. For all patterns P, I1, I2, P � I1 × I2 if and only if (P � I1 ∨ P �

I2).
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Proof. By contraposition, it suffices to show that P → I1 × I2 if and only if
P → I1 ∧ P → I2. If P → I1 ∧ P → I2, then P is a common factor of I1 and
I2 and hence P → I1 × I2. On the other hand, if P → I1 × I2, then, due to
the lack of edges between the connected components of I1 × I2, P must be the
juxtaposition of patterns P1, . . . , Pr where for each i = 1, . . . , r, Pi → Ri for
some Ri which is one of the connected components of I1 × I2. Each connected
component Ri of I1 × I2 satisfies Ri → R′

i for some common factor R′
i of I1 and

I2. By transitivity of the occurrence relation and by definition of I1×I2, we have
Pi → I1 and Pi → I2 (for i = 1, . . . , r) and hence P → I1 and P → I2.

3 The Two Lattices

Let P be the set of all patterns and I be the set of all generic instances. Let
T be the set of all subsets of I. Let S be the set of all subsets of P. In this
section we show that S and T have lattice structures with partial orders based
on notions of occurrence. Although P = I, S and T are distinct since they do
not have the same partial order.

We require two different definitions of occurrence of one set of patterns in
another, depending on whether the sets of patterns are considered as forbidden
patterns or sets of generic instances. For S1, S2 ∈ S, we write S1 � S2 to mean
that ∀Q ∈ S2, ∃P ∈ S1 such that P → Q. We write S1 �� S2 if S1 � S2 and
S2 � S1. For T1, T2 ∈ T , we write T1 �→ T2 to mean ∀P ∈ T1, ∃Q ∈ T2 such
that P → Q. We write T1 ↔ T2 if T1 �→ T2 and T2 �→ T1. It follows directly from
their definitions that �� and ↔ are equivalence relations.

Let T be the set of all equivalence classes (according to ↔) of sets of generic
instances. Let S be the set of all equivalence classes (according to ��) of sets
of forbidden patterns.

It is not difficult to see that �→ is a partial order on T and that � is a partial
order on S. It follows that T and S both have a lattice structure [2,21]. The
following proposition shows that the set T has a lattice structure with meet and
join operations × and ∪, whereas the set S has a lattice structure with meet
and join operations + and ∪.

Proposition 1. For all S1, S2 ∈ S, (1) S2 � S1 ⇔ S1 + S2 �� S1 and (2)
S2 � S1 ⇔ S1 ∪ S2 �� S2. For all T1, T2 ∈ T , (3) T1 �→ T2 ⇔ T1 × T2 ↔ T1

and (4) T1 �→ T2 ⇔ T1 ∪ T2 ↔ T2.

Proof. (1) ⇒: S2 � S1 means ∀P ∈ S1, ∃Q ∈ S2 such that Q → P and hence
P + Q → P . Thus S1 + S2 � S1. Clearly S1 � S1 + S2.
(1) ⇐: S1 + S2 � S1 means ∀P ∈ S1, ∃R + Q ∈ S1 + S2 such that R + Q → P
which implies Q → P . Hence S2 � S1.
(2) ⇒: S2 � S1 means ∀P ∈ S1, ∃Q ∈ S2 such that Q → P . Now, since ∀Q,
Q → Q, we have ∀R ∈ S1 ∪ S2, ∃Q ∈ S2 such that Q → R. Hence S2 � S1 ∪ S2.
Clearly S1 ∪ S2 � S2.
(2) ⇐: S2 � S1 ∪ S2 implies that ∀P ∈ S1, ∃Q ∈ S2 such that Q → P and so
S2 � S1.
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(3) T1 �→ T2 means that ∀I ∈ T1, ∃J ∈ T2 such that I → J , so I is a common
factor of I and J and hence I → I × J . Thus T1 �→ T1 × T2. Thus, by definition
of ×, T1 × T2 �→ T1.
(3) ⇐: T1 �→ T1 × T2 means that ∀I ∈ T1, ∃I × J ∈ T1 × T2 such that each
connected component of I occurs in a common factor of I and J , and hence
each connected component of I occurs in J and so I → J . Thus T1 �→ T2.
(4) ⇒: T1 �→ T2 means ∀I ∈ T1, ∃J ∈ T2 such that I → J . Thus T1 ∪ T2 �→ T2.
Clearly T2 �→ T1 ∪ T2.
(4) ⇐: T1 ∪ T2 → T2 implies ∀I ∈ T1, ∃J ∈ T2 such that I → J which is exactly
T1 �→ T2.

The following lemmas are not essential for the lattice structure of S and T ,
but will be useful later.

Lemma 3. If S1 ⊇ S2 then S1 � S2. If T1 ⊆ T2 then T1 �→ T2.

Proof. If S1 ⊇ S2 then ∀Q ∈ S2, ∃P = Q ∈ S1 such that P → Q. If T1 ⊆ T2

then ∀P ∈ T1, ∃Q = P ∈ T2 such that P → Q.

Lemma 4. For all sets of patterns S1, S2, S1 + S2 � S1 ∩ S2 and S1 ∩ S2 �→
S1 × S2.

Proof. We have ∀P ∈ S1 ∩S2, P �� P +P ∈ S1 +S2. Hence S1 +S2 � S1 ∩S2.
Also ∀I ∈ S1 ∩ S2, I ↔ I× ∈ S1 × S2. Hence S1 ∩ S2 �→ S1 × S2.

If we consider that S1 ≤ S2 if S2 � S1, then the minimal element in the
lattice S is the empty set of patterns and the maximal element is {P∅} where
P∅ is the pattern containing no points or edges. If we consider that T1 ≤ T2 if
T1 �→ T2 then the minimal element of T is the empty set of patterns and the
maximal element is the set of all patterns.

The two lattices S and T are both distributive, as shown by the following
proposition.

Proposition 2. For all S1, S2, S3 ∈ S, we have S1 + (S2 ∪ S3) �� (S1 + S2) ∪
(S1+S3) and for all T1, T2, T3 ∈ T , we have T1∪(T2×T3) ↔ (T1×T2)∪(T1×T3).

Proof. These follow immediately from the definitions.

4 The Galois Connection

The Galois connection is based on two functions f : S → T and g : T → S,
defined as follows.

f(S) = {I ∈ I | ∀P ∈ S, P � I}
g(T ) = {P ∈ P | ∀I ∈ T, P � I}

Theorem 1. There is an antitone Galois connection between S and T .
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Proof. The functions f, g, applied to equivalence classes of S and T define a
Galois connection between S and T if ∀S ∈ S, ∀T ∈ T , T ≤ f(S) ⇔ S ≤ g(T ).
This corresponds to (T �→ f(S)) ⇔ (g(T ) � S), which holds because (T �→ f(S))
and (g(T ) � S) are both equivalent to ∀P ∈ S, ∀I ∈ T , P � I. We therefore
have a Galois connection between S and T .

We now study this Galois connection in more detail.

Proposition 3. For all S1, S2 ∈ S, if S1 � S2 then f(S1) ⊆ f(S2). For all
T1, T2 ∈ T , if T1 �→ T2 then g(T2) ⊆ g(T1).

Proof. Suppose S1 � S2. Then ∀P2 ∈ S2, ∃P1 ∈ S1 such that P1 � P2. Consider
I ∈ f(S1). By definition of f , ∀P1 ∈ S1, P1 � I. It follows that I ∈ f(S2) since
otherwise we would have some P2 ∈ S2 such that P2 → I and some P1 ∈ S1

with P1 → P2 → I which contradicts P1 � I.
Suppose T1 �→ T2. Then ∀I1 ∈ T1, ∃I2 ∈ T2 such that I1 → I2. Consider

P ∈ f(T2). By definition of g, ∀I2 ∈ T2, P � I2. It follows that P ∈ g(T1) since
otherwise we would have some I1 ∈ T1 such that P → I1 and some I2 ∈ T2 such
that P → I1 → I2 which contradicts P � I2.

We immediately have the following corollary.

Corollary 1. For all S1, S2 ∈ S, S1 � S2 ⇒ f(S1) �→ f(S2). For all T1, T2 ∈
T , T1 �→ T2 ⇒ g(T1) � g(T2).

Proposition 4. For any patterns S1, S2, f(S1) = f(S2) if and only if S1 �� S2.

Proof. Suppose f(S1) = f(S2). Then ∀I, (∀P ∈ S1, P � I) ⇔ (∀P ∈ S2, P �

I). This is equivalent to ∀I, (∃P ∈ S1, P → I) ⇔ (∃P ∈ S2, P → I). It follows,
by setting I = P ∈ S2, that ∀P ∈ S2, ∃P ′ ∈ S1 such that P ′ → P , and
hence S1 � S2. By setting I = P ∈ S1, by a symmetrical argument, we obtain
S2 � S1, and hence S1 �� S2.

Now suppose that S1 �� S2. Then, by Proposition 3, we can deduce that
f(S1) = f(S2).

It is important to observe that T includes sets of partially-specified instances.
If we considered only sets of completely-specified instances in T , then Proposi-
tion 4 would not hold. For example, consider S1 and S2 shown in Fig. 3. It is easy
to see that we do not have S1 � S2, even though S1 and S2 define the same set
of completely-specified instances when forbidden, namely those instances which
have only positive edges or only negative edges. They do not define the same set
of generic instances, since, for example, the single pattern Q ∈ S2 is in f(S1)
but not f(S2).

Proposition 5. For any patterns T1, T2, g(T1) = g(T2) if and only if T1 ↔ T2.

Proof. Suppose g(T1) = g(T2). Then ∀P , (∀I ∈ T1, P � I) ⇔ (∀I ∈ T2, P � I).
This is equivalent to ∀P , (∃I ∈ T1, P → I) ⇔ (∃I ∈ T2, P → I)). Setting
P = I ∈ T1, we obtain ∀I ∈ T1, ∃I ′ ∈ T2 such that I → I ′, and hence T1 �→ T2.
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Fig. 3. The sets of patterns S1 = {P1, P2} and S2 = {Q} define the same set of
completely specified instances when forbidden, but f(S1) �= f(S2).

Setting P = I ∈ T2, by a symmetrical argument, we obtain T2 �→ T1, and hence
T1 ↔ T2.

Now suppose that T1 ↔ T2. By Proposition 3, we can deduce that g(T1) =
g(T2).

We now show to what extent the lattice structure of S and T is preserved
via the mappings f and g.

Theorem 2. ∀S1, S2 ∈ S, f(S1) ∪ f(S2) = f(S1 + S2).

Proof. For i = 1, 2, f(Si) = {I | ∀P ∈ Si, P � I}. So f(S1)∪f(S2) = {I | (∀P ∈
S1, P � I) ∨ (∀P ∈ S2, P � I)} = {I | ∀P1 ∈ S1,∀P2 ∈ S2(P1 � I ∨ P2 � I)}.
Thus, by Lemma 1, f(S1) ∪ f(S2) = {I | (∀P1 ∈ S1,∀P2 ∈ S2(P1 + P2 � I)} =
{I | ∀P1 + P2 ∈ S1 + S2(P1 + P2 � I)} = f(S1 + S2).

Theorem 3. ∀S1, S2 ∈ S, f(S1) ∩ f(S2) = f(S1 ∪ S2).

Proof. f(S1 ∪ S2) = {I | ∀P ∈ S1 ∪ S2, P � I} = {I | ∀P1 ∈ S1, P � I} ∩
{I | ∀P2 ∈ S2, P � I} = f(S1) ∩ f(S2).

The lattice structure and Theorems 2 and 3 are illustrated in Fig. 4.

Theorem 4. ∀T1, T2 ∈ T , g(T1) ∩ g(T2) = g(T1 ∪ T2).

Proof. g(T1 ∪ T2) = {P | ∀I ∈ T1 ∪ T2, P � I} = {P1 | ∀I ∈ T1, P1 � I} ∩
{P2 | ∀I ∈ T2, P2 � I} = g(T1) ∩ g(T2)

Theorem 5. ∀T1, T2 ∈ T , g(T1) ∪ g(T2) = g(T1 × T2).
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Fig. 4. The function f from S to T

Proof. g(T1 × T2) = {P | ∀I ∈ T1 × T2, P � I} = {P | ∀I1 ∈ T1,∀I2 ∈ T2, P �

I1×I2}. By Lemma 2, this is equal to {P | ∀I1 ∈ T1,∀I2 ∈ T2, (P � I1∨P � I2)}
= {P | ∀I1 ∈ T1, P � I1} ∪ {P | ∀I2 ∈ T2, P � I2} = g(T1) ∪ g(T2).

Theorems 4 and 5 are illustrated in Fig. 5.

Definition 2. A set T of patterns is downward-closed if for all patterns P,Q,
(P → Q) ∧ (Q ∈ T ) ⇒ (P ∈ T ). A set of patterns S is upward-closed if for all
patterns P,Q, (P → Q) ∧ (P ∈ S) ⇒ (Q ∈ S).

In the case of upward-closed sets of forbidden patterns and/or downward-
closed sets of generic instances, the lattices, and the corresponding Galois con-
nection, become simpler as the following proposition shows. In this case the
two lattices become lattices of sets with meet and join operations ∩ and ∪. In
practice, however, we are generally interested in small sets of forbidden patterns
which cannot be upward-closed (otherwise they would be infinite).

Proposition 6. If S1, S2 are upward-closed, then S1 + S2 �� S1 ∩ S2. If T1, T2

are downward-closed, then T1 ∩ T2 ↔ T1 × T2.

Proof. ∀P + Q ∈ S1 + S2, we have P → P + Q and Q → P + Q. By the
upward closedness of both S1 and S2, it follows that P + Q ∈ S1 ∩ S2. Thus
S1 ∩ S2 � S1 + S2. By Lemma 4, we have S1 + S2 �� S1 ∩ S2.
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Fig. 5. The function g from T to S

∀P × Q ∈ T1 × T2, P × Q → P and P × Q → Q. If T1, T2 are downward-
closed, then P × Q ∈ T1 ∩ T2. Thus T1 × T2 �→ T1 ∩ T2. By Lemma 4, we have
T1 ∩ T2 ↔ T1 × T2.

5 Tractability Consequences of the Galois Connection

In this section we show that tractable sets of patterns form a sublattice of S.
Recall that we say that T ∈ T is tractable if there is a polynomial-time

algorithm to decide all completely-specified instances in T . We consider that
incompletely-specified instances (i.e. generic instances with at least one pair of
points not joined by a (positive or negative) edge) can be recognised as such in
polynomial time and hence do not affect the tractability of T . A consequence
of this is that it is not true that T1 �→ T2 ∧ (T2 tractable) ⇒ T1 tractable.
For example, T2 could be trivially tractable because it contains no completely-
specified instance even when T1 is the set of all binary CSP instances. However,
we have the following important result.

Proposition 7. If T1 = f(S1) and T2 = f(S2), then (T1 �→ T2 ∧ (T2

tractable)) ⇒ T1 tractable.

Proof. Let T1 = f(S1) and T2 = f(S2), where T1 �→ T2. By Proposition 3, we
have g(T2) ⊆ g(T1) and so by Lemma 3, g(T1) � g(T2). By definition of the
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functions f and g, we have f(g(f(S))) = f(S) for all S, and so f(g(T1)) = f(S1)
and f(g(T2)) = f(S2). It follows from Proposition 4 that S1 �� g(T1) and
S2 �� g(T2). Thus S1 �� g(T1) � g(T2) �� S2. By transitivity of �, we have
S1 � S2 and, by Proposition 3, T1 = f(S1) ⊆ f(S2) = T2. It follows that if T2

is tractable, then so is T1.

This means that it may be possible to classify the complexity of all classes
f(S) for all finite sets S ∈ S. Indeed we conjecture that there is a P/NP-complete
dichotomy. This has already been proved for sets of patterns containing only
negative edges [9].

The following proposition tells us that the tractable sets of patterns form a
sub-lattice of S.

Proposition 8. If S1, S2 are tractable sets of patterns, then so are S1 ∪ S2 and
S1 + S2.

Proof. f(S1+S2) = f(S1)∪f(S2) and hence can be solved in polynomial time if
f(S1) and f(S2) can be. A similar remark holds for f(S1 ∪ S2) = f(S1) ∩ f(S2).

We can observe that the finite sets of S form a sublattice of S since S1+S2 and
S1 ∪ S2 are finite if S1, S2 are finite. It follows that the finite tractable sets of S
form a sublattice. We are particularly interested in finite sets of patterns, since
detecting the absence of finite sets of patterns can be achieved in polynomial
time, whereas testing the absence of an infinite set of patterns may not even by
computable. We can observe that there are infinite sets of patterns S such that
f(S) is tractable but for no finite subset S′ of S is f(S′) tractable, e.g. acyclic
instances that can be defined by forbidding cycles of all lengths but by no finite
set of flat patterns [11].

6 Augmented Patterns: Motivation

We can make the language of patterns much richer by adding relations to pat-
terns (and possibly quantifying over these relations). A flat pattern (the kind of
pattern we have studied up to now in this paper) has only the binary relations
of compatibility between points (positive edges), incompatibility between points
(negative edges) and the equivalence relation between points corresponding to
assignments to the same variable (represented in figures by ovals representing its
equivalence classes). Suppose that we add a new relation, such as an ordering or
a colouring of the points of the pattern. We call this an augmented pattern. In
this section, we motivate the study of augmented patterns by showing that they
can be used to define interesting tractable classes that cannot be defined using
flat patterns. Examples of such augmented patterns are a pattern in which we
add an ordering between points (the new relation is binary) or a colouring of
points (in which case the new relation is unary). For these new relations to be
meaningful, they must satisfy the basic properties of, for example, orderings or
colourings. To impose this we can replace a single pattern P by a set of patterns,
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one being the augmented pattern P and the others designed in such a way as to
impose the required properties of the new relation.

Consider a binary relation R<. Each of the following three statements can
be seen as an augmented pattern involving only the relation R<:

R<(a, a) (1)
R<(a, b) ∧ R<(b, a) (2)

R<(a, b) ∧ R<(b, c) ∧ R<(c, a) (3)

By forbidding these three patterns, we impose that R< is an irreflexive, anti-
symmetric relation with no length-3 cycles. In the following we only consider
instances in which R< is total in the sense that for all distinct a, b, we have
R<(a, b) or R<(b, a). It is easy to see that this implies that R< is a strict total
order (since, in particular, forbidding pattern (3) corresponds to transitivity).
From now on, for notational convenience, we use the operator < instead of the
relation R<, i.e. we write a < b instead of R<(a, b). If we also forbid the aug-
mented pattern shown in Fig. 6(a), then we not only impose an order on the
points of an instance, but we also impose that there is a corresponding order on
the variables which is consistent with this order on the points.

If we also forbid the augmented pattern in Fig. 6(b), then we are saying
that there is a total ordering of the variables of the instance such that each
variable is constrained by at most one previous variable in this order. The set
of completely-specified instances with a total ordering on its points in which
none of these five augmented patterns occurs corresponds exactly to the set of
instances whose constraint graph is acyclic. It is well known that this class of
binary CSP instances is tractable since it is solved by arc consistency [22]. Recall
that no finite set of forbidden flat patterns defines the set of acyclic instances
[11]. This example demonstrates the power of augmented patterns compared
to flat patterns, since acyclicity can be defined by forbidding a set of just five
augmented patterns.

In fact, for any fixed k ≥ 1, we can define the class of instances with tree-
width bounded by k using a finite set of augmented patterns. We saw above that
the patterns (1), (2), (3) together with the pattern shown in Fig. 6(a) effectively
allows us to impose an order on variables. Apart from this variable-order relation,
we also introduce another binary relation IE (for Induced Edge between two
variables in the constraint graph) which, using the same idea as in Fig. 6(a),
is also effectively a relation on variables. For simplicity of presentation, in the
following, we apply < and IE to variables rather than points. We also require
the relation IE and we will consider only those instances in which IE and IE
cover all pairs of variables. To ensure that IE is the complement of IE we forbid
the augmented pattern

IE(x, y) ∧ IE (x, y)

The semantics of the induced-edge relation IE is given by the following rules:

1. IE is symmetric.
2. If there is a negative edge between variables x and y, then IE (x, y).
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Fig. 6. Examples of augmented patterns.

3. If x < z, y < z, IE (x, z) and IE (y, z), then IE (x, y).

These rules can easily be coded using forbidden augmented patterns involving
<, IE and IE . Symmetry is coded by the forbidden pattern

IE(x, y) ∧ IE (y, x)

Rule 2, above, can be imposed by forbidding the augmented pattern shown in
Fig. 7. Rule 3 can be coded by the forbidden pattern:

(x < z) ∧ (y < z) ∧ IE (x, z) ∧ IE (y, z) ∧ IE (x, y)

In order to impose a bound of k on the tree-width of the constraint graph, there
must exist a total variable order and relations IE , IE (x, y) (that cover all pairs
of variables) such that the following augmented pattern does not occur:

(x1 < z) ∧ . . . ∧ (xk+1 < z) ∧ IE (x1, z) ∧ . . . ∧ IE (xk+1, z)

This corresponds to a well-known characterisation of graphs with bounded tree-
width as subgraphs of k-trees [22,24]. This example illustrates the fact that we
need to apply a filter to the set of instances I defined by forbidding a set of
augmented patterns. In this case, the filter is that I is completely specified, < is
a total order on variables and IE , IE form a cover. When defining tractability
of augmented patterns, we are only concerned in deciding instances satisfying
the filter.

Another example which motivates the use of augmented patterns is the study
of tractable languages. All known tractable constraint languages are defined by
the existence of a polymorphism (a pointwise closure operation) which guaran-
tees tractability [27]. Indeed, tractability is guaranteed by the identities satisfied
by the polymorphism [4]. The existence of a polymorphism satisfying any given
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Fig. 7. An augmented pattern.

set of identities can be stated in terms of a forbidden augmented pattern. Indeed,
an augmented pattern can enforce the fact that the constraints of the instance
must all have a polymorphism f and other patterns can enforce the identities
that f must satisfy. By existentially quantifying over f we can then define the
class of all instances whose constraints all have some majority polymorphism f ,
for example, or all of whose constraints have a Siggers polymorphism [39].

We illustrate this for weak near-unanimity polymorphisms, given their impor-
tance in the characterisation of tractable languages [3,41]. A binary CSP instance
I has the k-ary polymorphism f : Dk → D if for all binary relations R of I we
have ∀(a1, b1), . . . , (ak, bk) ∈ R, (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ R. The first step
to expressing the fact that a binary CSP instance has the k-ary polymorphism
f is to forbid the augmented pattern POLYk(f) shown in Fig. 8 for the case
k = 4. A weak near-unanimity operation is a function f : Dk → D satisfying the
identities f(b, a, . . . , a) = f(a, b, a, . . . , a) = . . . = f(a, . . . , a, b). These identities
are equivalent to forbidding each of the following augmented patterns

(f(b, a, . . . , a) = c) ∧ (f(a, b, a, . . . , a) = d) ∧ (c �= d)
(f(b, a, . . . , a) = c) ∧ (f(a, a, b, a, . . . , a) = d) ∧ (c �= d)

...
(f(b, a, . . . , a) = c) ∧ (f(a, . . . , a, b) = d) ∧ (c �= d)

For some fixed k, after forbidding these augmented patterns (the polymorphism
pattern POLYk(f) as illustrated in Fig. 8 together with the above patterns cor-
responding to the identities of a weak near-unanimity polymorphism of arity k),
we obtain a set of instances. We then have to apply a filter so that we only keep
those instances I = 〈AI , ρI〉 in which f is a total function and such that all
domains are closed under f , i.e. for all x ∈ X and for all a1, . . . , ak ∈ D such
that (x, ai) ∈ AI (i = 1, . . . , k), we have (x, f(a1, . . . , ak)) ∈ AI . This example
again illustrates the fact that tractability of augmented patterns depends on
the existence of a polynomial-time algorithm to decide instances satisfying the
corresponding filter.

Another motivating example involves a colouring of points. Suppose that
both S1 and S2 are tractable sets of flat patterns. Then we know that S1 + S2

defines the tractable class of instances in which either S1 does not occur or S2
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Fig. 8. Polymorphisms can be defined by forbidding augmented patterns, as illustrated
for this arity-4 polymorphism f .

does not occur. The number of patterns in S1+S2 is (in the worst case) quadratic
in the size of S1 and S2. We can give a set of augmented patterns which is linear
in the size of S1 and S2 as follows. We augment each pattern in S1 by colouring
all its points red and each pattern in S2 by colouring all its points green. We
then add a pattern consisting of two points, one red and the other green. The
set of instances for which there is a 2-colouring of its points in which none of
these augmented patterns occurs is exactly the set of instances in f(S1)∪f(S2).

7 Augmented Patterns: Definitions

An augmented pattern is simply a flat pattern together with a conjunction of
atomic formulas such as Ri(p1, . . . , pai

) where each Ri is a relation (of arity ai)
and p1, . . . , pai

are points. An augmented pattern P occurs in another augmented
pattern Q if there is a mapping from P to Q which corresponds to the occurrence
of the flat version of P in the flat version of Q and which also preserves the
new relation(s) Ri. The new relation(s) Ri may, for example, correspond to an
order. As an example, the augmented pattern in Fig. 9(a) does not occur in the
augmented pattern in Fig. 9(b) since the variable order is not preserved. On the
other hand, the pattern P1 in Fig. 1 does occur in Fig. 9(b) since there is no
variable order in P1 to preserve.

As a starting point, we can consider instances augmented with one or more
new relation(s). In other words we consider structured instances (e.g. instances
with an order on the variables). As usual, in order to establish a Galois connec-
tion, we have to consider the lattice of all generic instances including partially-
specified instances (partial in the sense that certain pairs of points are joined
by neither a negative nor a positive edge or the new relations do not form a
cover, e.g. the variable order is only partial). The operations × and + and the
functions f and g are defined as for sets of flat patterns. In particular, in P + Q
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there is no relation (e.g. no variable ordering) between the copies of P and Q
in P + Q. The two lattice structures and the Galois connection between them
follow from exactly the same arguments as for flat patterns.

Fig. 9. (a) The broken-triangle pattern (BTP). (b) An alternative pattern which defines
the same class.

However, our aim is to consider the existential quantification of the rela-
tions (variable ordering, polymorphism, colouring) associated with a (set of)
augmented pattern(s). As an example of an augmented pattern, consider the
broken-triangle pattern (BTP) [16] shown in Fig. 9(a). We associate with this
pattern all instances for which there is some variable ordering for which BTP
does not occur. It turns out that, in the case of BTP, it is decidable in polyno-
mial time whether such a variable ordering exists [16]. In general, each structured
instance (e.g. an instance with new relations such as a variable ordering) has a
corresponding flat version in which the new relations are forgotten, and our aim
is to establish a Galois connection between sets of flat instances and augmented
patterns.

We would like to establish a Galois connection between the set of sets of flat
generic instances T and the set of sets of augmented patterns which we denote by
SA. However, this does not seem possible. Instead we present in Sect. 8 a Galois
connection between T and ΣA the set of sets of sets of augmented patterns.
Each σ ∈ ΣA is a set of the form {S1, S2, . . .} where each Si ∈ SA is a set of
patterns. Observe that since every element S of SA has a corresponding singleton
element {S} in ΣA, we can consider ΣA as an extension of SA. We extend our
definition of � from SA to ΣA as follows: σ1 � σ2 if ∀S2 ∈ σ2, ∃S1 ∈ σ1 such
that S1 � S2. We define ΣA to be the set of equivalence classes with respect to
the equivalence relation �� in ΣA.
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We first have to understand the lattice structure of 〈ΣA,≤〉, where σ1 ≤ σ2

if and only if σ2 � σ1. The meet and join operations of this lattice are the
operations + and ∪. This follows from the following lemmas.

Lemma 5. For σ, σ1, σ2 ∈ ΣA, if σ1 � σ and σ2 � σ then (σ1 + σ2) � σ.

Proof. Suppose that σ1 � σ and σ2 � σ and consider any S ∈ σ. We have
∃Si ∈ σi such that Si � S (i = 1, 2). So ∀P ∈ S, ∃Pi ∈ Si such that Pi → P
(i = 1, 2). Thus P1+P2 → P and hence S1+S2 � S. It follows that (σ1+σ2) � σ.

Lemma 6. For σ, σ1, σ2 ∈ ΣA, if σ � σ1 and σ � σ2 then σ � (σ1 ∪ σ2).

Proof. If σ � σ1 and σ � σ2, then ∀Si ∈ σi, ∃S ∈ σ such that S � Si (i = 1, 2).
Hence, σ � (σ1 ∪ σ2).

We fix a relational signature. Indeed, for simplicity of presentation, in the
following we assume that there is a single new relation Rel of a fixed arity
a (which could be the cartesian product of several relations). We denote by
REL the set of all possible functions from the set of (flat) instances to the
set of relations of arity a. Thus, given a flat instance I ∈ I and a function
Rel ∈ REL, 〈I,Rel(I)〉 is an augmented version of I (e.g. the instance I with
an ordering on its variables). We can now define occurrence of a set S ∈ SA of
augmented patterns in an instance I ∈ I as ∀Rel ∈ REL, ∃PA ∈ S such that
PA → 〈I,Rel(I)〉. Hence, S does not occur in I if

∃Rel ∈ REL such that ∀PA ∈ S, PA � 〈I,Rel(I)〉.

Thus occurrence of a set S of augmented patterns depends on a single quan-
tification over REL. This is the reason why we need to consider sets of sets of
augmented patterns to obtain a Galois connection.

8 A Galois Connection for Augmented Patterns

In order to establish a Galois connection between ΣA and T , we require the
following functions F : ΣA → T and G : T → ΣA.

F (σ) = {I ∈ I | ∀S ∈ σ,∃Rel ∈ REL such that ∀P ∈ S, P � 〈I,Rel(I)〉}
G(T ) = {S ∈ SA | ∀I ∈ T,∃Rel ∈ REL such that ∀P ∈ S, P � 〈I,Rel(I)〉}

To give a concrete example to illustrate the definition of F , if S contains patterns
which when forbidden impose that Rel is a partial order on the variables, then
F ({S}) only contains instances equipped with a partial order on their variables.
As in the case of BTP, we may want to impose a total order on the variables.
F ({S}) contains many instances which are either incompletely specified or for
which Rel is not total; such instances can be recognised (and filtered out) in
polynomial time and thus are irrelevant for deciding whether S is tractable or
not, but are essential for the Galois connection. This is analogous to the Galois
connection for flat pattern where f(S) included incompletely-specified instances.



144 D. A. Cohen et al.

Given a set of instances T , there may be more than one way of describing T
using forbidden augmented patterns. For example, let S1 be the set of augmented
patterns imposing a partial order on variables (as described in Sect. 6) together
with the pattern BTP shown in Fig. 9(a), and let S2 be identical to S1 except
that BTP is replaced by the pattern in Fig. 9(b). It is easy to see that F ({S1}) =
F ({S2}). Hence, if T = F ({S1}), then S1, S2 ∈ G(T ).

Theorem 6. The functions F and G define an antitone Galois connection
between ΣA and T .

Proof. To show that we have an antitone Galois connection between ΣA and
T , it suffices to show that ∀σ ∈ ΣA, ∀T ∈ T , T ≤ F (σ) ⇔ σ ≤ G(T ). This
corresponds to (T �→ F (σ)) ⇔ (G(T ) � σ).

By definition, T �→ F (σ) if and only if ∀IT ∈ T , ∃I ∈ I with IT → I and such
that ∀S ∈ σ, ∃Rel ∈ REL such that ∀P ∈ S, P � 〈I,Rel(I)〉. Thus T �→ F (S)
if and only if ∀IT ∈ T , ∀S ∈ σ, ∃Rel ∈ REL such that ∀P ∈ S, P � 〈I,Rel(I)〉.

On the other hand, G(T ) � σ if and only if ∀S ∈ σ, ∃S′ ∈ SA with S′ � S
and such that ∀I ∈ T , ∃Rel ∈ REL such that ∀P ′ ∈ S′, P ′

� 〈I,Rel(I)〉. Thus
G(T ) � σ if and only if ∀S ∈ σ, ∀I ∈ T , ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉.

We therefore have (T �→ F (σ)) ⇔ (G(T ) � σ) which completes the proof.

The Galois connection is similar to the Galois connection between T and S,
as demonstrated by the following results.

Theorem 7. For all σ1, σ2 ∈ ΣA, F (σ1 + σ2) = F (σ1) ∪ F (σ2).

Proof. F (σ1+σ2) = {I ∈ I | ∀S ∈ σ1+σ2, ∃Rel ∈ REL such that ∀P ∈ S, P �

〈I,Rel(I)〉} = {I ∈ I | ∀S1 ∈ σ1, ∀S2 ∈ σ2, ∃Rel ∈ REL such that ∀P1 ∈ S1,
∀P2 ∈ S2, P1 +P2 � 〈I,Rel(I)〉}. But P1 +P2 � 〈I,Rel(I)〉 if and only if P1 �

〈I,Rel(I)〉 or P2 � 〈I,Rel(I)〉 (by an immediate generalisation of Lemma 1
to augmented patterns). Furthermore, ∀P1 ∈ S1, ∀P2 ∈ S2, P1 � 〈I,Rel(I)〉
or P2 � 〈I,Rel(I)〉 if and only if ∀P1 ∈ S1, P1 � 〈I,Rel(I)〉 or ∀P2 ∈ S2,
P2 � 〈I,Rel(I)〉. From all this, it follows that F (σ1 + σ2) = {I ∈ I | ∀S1 ∈ σ1,
∃Rel ∈ REL such that ∀P ∈ S1, P � 〈I,Rel(I)〉} ∪ {I ∈ I | ∀S2 ∈ σ2,
∃Rel ∈ REL such that ∀P ∈ S2, P � 〈I,Rel(I)〉} = F (σ1) ∪ F (σ2).

Theorem 8. For all σ1, σ2 ∈ ΣA, F (σ1 ∪ σ2) = F (σ1) ∩ F (σ2).

Proof. F (σ1 ∪ σ2) = {I ∈ I | ∀S ∈ σ1 ∪ σ2, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} = {I ∈ I | ∀S ∈ σ1, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} ∩ {I ∈ I | ∀S ∈ σ2, ∃Rel ∈ REL such that ∀P ∈ S, P �

〈I,Rel(I)〉} = F (σ1) ∩ F (σ2).

The lattice structure of ΣA and Theorems 7 and 8 are illustrated in Fig. 10.

Theorem 9. For all T1, T2 ∈ T , G(T1 ∪ T2) = G(T1) ∩ G(T2).
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Fig. 10. The function F from ΣA to T

Proof. G(T1 ∪ T2) = {S ∈ SA | ∀I ∈ T1 ∪ T2, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} = {S ∈ SA | ∀I ∈ T1, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} ∩ {S ∈ SA | ∀I ∈ T2, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} = G(T1) ∩ G(T2).

Theorem 10. For all T1, T2 ∈ T , G(T1 × T2) = G(T1) ∪ G(T2).

Proof. G(T1 × T2) = {S ∈ SA | ∀I ∈ T1 × T2, ∃Rel ∈ REL such that ∀P ∈ S,
P � 〈I,Rel(I)〉} = {S ∈ SA | ∀I1 ∈ T1, ∀I2 ∈ T2, ∃Rel ∈ REL such that
∀P ∈ S, P � 〈I1 × I2, Rel(I1 × I2)〉}. Now, for any Rel ∈ REL, 〈I1, Rel(I1)〉
× 〈I2, Rel(I2)〉 → 〈I1 × I2, Rel(I1 × I2)〉. Thus P � 〈I1 × I2, Rel(I1 × I2)〉
implies P � 〈I1, Rel(I1)〉 × 〈I2, Rel(I2)〉 which (by an immediate extension of
Lemma 2 to augmented patterns) is equivalent to (P � 〈I1, Rel(I1)〉) ∨ (P �

〈I2, Rel(I2)〉). It follows from the above that G(T1 × T2) ⊆ {S ∈ SA | ∀I1 ∈ T1,
∀I2 ∈ T2, ∃Rel ∈ REL such that (P � 〈I1, Rel(I1)〉) ∨ (P � 〈I2, Rel(I2)〉)}.
But, the latter is equal to {S ∈ SA | (∀I1 ∈ T1, ∃Rel ∈ REL such that (P �

〈I1, Rel(I1)〉)) ∨ (∀I1 ∈ T2, ∃Rel ∈ REL such that P � 〈I2, Rel(I2)〉)} =
G(T1) ∪ G(T2). Thus G(T1 × T2) ⊆ G(T1) ∪ G(T2).

In order to show G(T1) ∪ G(T2) ⊆ G(T1 × T2), and hence to complete the
proof, without loss of generality, we only need to show G(T1) ⊆ G(T1 × T2).
Consider S ∈ G(T1). We have ∀I1 ∈ T1, ∃Rel1 ∈ REL such that ∀P ∈ S,
P � 〈I1, Rel1(I1)〉. Therefore, for all common factors I of I1 and I2, ∃Rel ∈ REL
such that ∀P ∈ S, P � 〈I,Rel(I)〉. Indeed, we can clearly choose Rel = Rel1 for
each such I. Now I1 × I2 is the juxtaposition of copies of such common factors
I. These copies are comprised of disjoint sets of points. For each such copy of a
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common factor I composing I1 × I2, there is a corresponding version of Rel1(I)
which we denote by RelI(I). The relations RelI(I) are disjoint (since within
I1 × I2 each common factor I is comprised of disjoint sets of points). Let R be
the relation which is the union of all these RelI(I). Then ∃Rel ∈ REL such
that Rel(I1 × I2) = R. Now ∀P ∈ S, P � 〈I1 × I2, Rel(I1 × I2)〉. Therefore
S ∈ G(T1 × T2) which completes the proof.

Theorems 9 and 10 are illustrated in Fig. 11.

Fig. 11. The function G from T to ΣA

In order to define tractability of sets of augmented patterns we must apply
a filter to instances so that we only consider completely-specified instances with
a certain property. Examples of filters include the property that an ordering
relation is total or that two relations (such as the relations IE and IE that
we introduced in Sect. 6) form a cover of all pairs of assignments to distinct
variables. For example, in the case of BTP, we are only interested in instances
equipped with a total ordering on the variables, since the pattern shown in
Fig. 9(a) trivially does not occur on variables which are not ordered. This leads
to the following definition of tractability.

Definition 3. Let F be a property of instances I ∈ I that can be verified in
polynomial time. We say that σ ∈ ΣA is tractable (with respect to the filter F)
if there is a polynomial-time algorithm to decide the set of completely-specified
instances in F (σ) (which satisfy the filter F). In particular, we say that S ∈ SA

is tractable (w.r.t. F) if {S} is tractable (w.r.t. F).
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Proposition 9. The tractable elements of ΣA form a sublattice. Furthermore,
the tractable sets of augmented patterns form a join semi-lattice of SA.

Proof. If σ1, σ2 ∈ ΣA are tractable, then so are σ1 +σ2 and σ1 ∪σ2. This follows
immediately from the fact that F (σ1 + σ2) = F (σ2) ∪ F (σ2) and F (σ1 ∪ σ2) =
F (σ2)∩F (σ2). The tractable sets of augmented patterns form a join semi-lattice,
since S1, S2 tractable implies that S1 + S2 is tractable.

9 Discussion and Conclusion

In this paper we have initiated the study of the Galois connection between
lattices of sets of forbidden patterns and sets of instances. The consequences
of this Galois connection for expressibility and tractability questions remains
largely unexplored. However, we have shown that the tractable sets of patterns
form a sub-lattice.

Augmented patterns provide a rich language in which we can define many
interesting classes of instances in a concise form, notably by adding an order on
the variables or the values. We have seen that both bounded treewidth and the
existence of a polymorphism satisfying a set of identities can be expressed using
augmented patterns (together with a filter on the set of instances). This leads
to an orthogonal question of the tractability of the recognition of classes defined
by augmented patterns. For example, given a binary CSP instance, it is NP-
hard to determine whether there exists an ordering of the values under which all
relations are max-closed [25]. On the other hand, it is tractable to decide whether
the relations have a conservative Mal’tsev polymorphism [6]. Determining the
tractability frontier of this meta-problem is an open question for augmented
patterns. As we have pointed out, the recognition problem is always tractable
for finite sets of flat patterns.

It is natural to ask whether the Feder-Vardi dichotomy [23] (for classes of
CSP instances defined by finite languages of constraint relations) generalises
to classes of CSP instances defined by augmented patterns. However, we know
that no such P/NP-hard dichotomy can exist by the work on lifted patterns
by Kun and Nešetřil [33] and by Ladner’s theorem [34]. It is an open question
whether classes of CSP instances defined by forbidding flat patterns exhibit a
dichotomy in the following sense: all finite sets of patterns are either tractable
or NP-complete. We conjecture that this is true.
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for CSPs defined by monotone patterns. Algorithmica 81(4), 1699–1727 (2019).
https://doi.org/10.1007/s00453-018-0498-2

8. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a
survey. Constraints 21(2), 115–144 (2016). https://doi.org/10.1007/s10601-015-
9198-6

9. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability
of CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR) 45, 47–78
(2012). https://doi.org/10.1613/jair.3651

10. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A., Powell, R., Živný, S.:
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32. Krokhin, A.A., Živný, S. (eds.): The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). http://www.dagstuhl.de/dagpub/978-3-95977-
003-3
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