Skip to main content

Combining Rhythmic and Morphological ECG Features for Automatic Detection of Atrial Fibrillation: Local and Global Prediction Models

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Abstract

Atrial fibrillation (AF) is the most common type of heart arrhythmia. AF is highly associated with other cardiovascular diseases, such as heart failure, coronary artery disease and can lead to stroke. Unfortunately, in some cases people with atrial fibrillation have no explicit symptoms and are unaware of their condition until it is discovered during a physical examination. Thus, it is considered a priority to define highly accurate automatic approaches to detect such a pathology in the context of a massive screening.

For this reason, in the recent years several approaches have been defined to automatically detect AF. These approaches are often based on machine learning techniques and—most of them—analyse the heart rhythm to make a prediction. Even if AF can be diagnosed by analysing the rhythm, the analysis of the morphology of a heart beat is also important. Indeed, during an AF events the P wave could be absent and fibrillation waves may appear in its place. This means that the presence of only arrhythmia could be not enough to detect an AF events.

Based on the above consideration we have presented Morphythm, an approach that use machine learning to combine rhythm and morphological features to identify AF events. The results we achieved in an empirical evaluation seems promising. In this paper we present an extension of Morphythm, called Local Morphythm, aiming at further improving the detection accuracy of AF events. An empirical evaluation of Local Morphythm has shown significantly better results in the classification process with respect to Morphythm, particularly for what concerns the true positives and false negatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bit.ly/3dvrXJX.

  2. 2.

    In the Local Morphythm evaluation, we experimented several supervised machine learning technique.

  3. 3.

    https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/functions/SGD.html.

References

  1. Afdala, A., Nuryani, N., Nugroho, A.S.: Automatic detection of atrial fibrillation using basic Shannon entropy of RR interval feature. J. Phys.: Conf. Ser. 795, 012038 (2017)

    Google Scholar 

  2. Andersen, R.S., Peimankar, A., Puthusserypady, S.: A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 115, 465–473 (2019)

    Article  Google Scholar 

  3. Balestrieri, E., et al.: The architecture of an innovative smart T-shirt based on the internet of medical things paradigm. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2019)

    Google Scholar 

  4. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z., Li, J., Li, Z., Peng, Y., Gao, X.: Automatic detection and classification of atrial fibrillation using RR intervals and multi-eigenvalue. Sheng wu yi xue gong cheng xue za zhi= J. Biomed. Eng.= Shengwu yixue gongchengxue zazhi 35(4), 550–556 (2018)

    Google Scholar 

  6. Clifford, G.D., Azuaje, F., McSharry, P., et al.: Advanced Methods and Tools for ECG Data Analysis. Artech House, Boston (2006)

    Google Scholar 

  7. Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–123. Elsevier (1995)

    Google Scholar 

  8. Colloca, R., Johnson, A.E., Mainardi, L., Clifford, G.D.: A support vector machine approach for reliable detection of atrial fibrillation events. In: Computing in Cardiology 2013, pp. 1047–1050. IEEE (2013)

    Google Scholar 

  9. Cramer, J.S.: The origins of logistic regression (2002)

    Google Scholar 

  10. Dash, S., Chon, K., Lu, S., Raeder, E.: Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 37(9), 1701–1709 (2009). https://doi.org/10.1007/s10439-009-9740-z

    Article  Google Scholar 

  11. Devasena, C.L.: Comparative analysis of random forest, REP tree and J48 classifiers for credit risk prediction. Int. J. Comput. Appl. (2014). 0975-8887

    Google Scholar 

  12. Elliott, T., Yopes, M.C.: Direct-to-consumer telemedicine. J. Allergy Clin. Immunol. Pract. 7(8), 2546–2552 (2019)

    Article  Google Scholar 

  13. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  14. Friberg, L., Rosenqvist, M., Lindgren, A., Terént, A., Norrving, B., Asplund, K.: High prevalence of atrial fibrillation among patients with ischemic stroke. Stroke 45(9), 2599–2605 (2014)

    Article  Google Scholar 

  15. Fuster, V., et al.: ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American college of cardiology/american heart association task force on practice guidelines and the european society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European heart rhythm association and the heart rhythm society. Circulation 114(7), e257–e354 (2006)

    Google Scholar 

  16. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  17. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  18. Hochstadt, A., Chorin, E., Viskin, S., Schwartz, A.L., Lubman, N., Rosso, R.: Continuous heart rate monitoring for automatic detection of atrial fibrillation with novel bio-sensing technology. J. Electrocardiol. 52, 23–27 (2019)

    Article  Google Scholar 

  19. Huang, C., Ye, S., Chen, H., Li, D., He, F., Tu, Y.: A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng. 58(4), 1113–1119 (2010)

    Article  Google Scholar 

  20. Kleyko, D., Osipov, E., Wiklund, U.: A comprehensive study of complexity and performance of automatic detection of atrial fibrillation: classification of long ECG recordings based on the PhysioNet computing in cardiology challenge 2017. Biomed. Phys. Eng. Express 6(2), 025010 (2020)

    Article  Google Scholar 

  21. Lake, D.E., Moorman, J.R.: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol.-Heart Circ. Physiol. 300(1), H319–H325 (2011)

    Article  Google Scholar 

  22. Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M., Frank, E.: WekaDeeplearning4j : a deep learning package for Weka based on deeplearning4j. Knowl.-Based Syst. 178, 48–50 (2019)

    Article  Google Scholar 

  23. Laudato, G., et al.: Combining rhythmic and morphological ECG features for automatic detection of atrial fibrillation. In: HEALTHINF, pp. 156–165 (2020)

    Google Scholar 

  24. de Heuzey, J.Y., et al.: Cost of care distribution in atrial fibrillation patients: the COCAF study. Am. Heart J. 147(1), 121–126 (2004)

    Article  Google Scholar 

  25. Lee, J., Nam, Y., McManus, D.D., Chon, K.H.: Time-varying coherence function for atrial fibrillation detection. IEEE Trans. Biomed. Eng. 60(10), 2783–2793 (2013)

    Article  Google Scholar 

  26. Lian, J., Wang, L., Muessig, D.: A simple method to detect atrial fibrillation using RR intervals. Am. J. Cardiol. 107(10), 1494–1497 (2011)

    Article  Google Scholar 

  27. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  28. Menzies, T., et al.: Local versus global lessons for defect prediction and effort estimation. IEEE Trans. Softw. Eng. 39(6), 822–834 (2012)

    Article  Google Scholar 

  29. Moddemeijer, R.: On estimation of entropy and mutual information of continuous distributions. Sig. Process. 16(3), 233–248 (1989)

    Article  MathSciNet  Google Scholar 

  30. Mohebbi, M., Ghassemian, H.: Detection of atrial fibrillation episodes using SVM. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 177–180. IEEE (2008)

    Google Scholar 

  31. Niknejad, N., Ismail, W.B., Mardani, A., Liao, H., Ghani, I.: A comprehensive overview of smart wearables: the state of the art literature, recent advances, and future challenges. Eng. Appl. Artif. Intell. 90, 103529 (2020)

    Article  Google Scholar 

  32. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, classification (1992)

    Google Scholar 

  33. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  34. Procter, N.E., Stewart, S., Horowitz, J.D.: New-onset atrial fibrillation and thromboembolic risk: cardiovascular syzygy? Heart Rhythm 13(6), 1355–1361 (2016)

    Article  Google Scholar 

  35. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  36. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  37. Sepulveda-Suescun, J.P., Murillo-Escobar, J., Urda-Benitez, R.D., Orrego-Metaute, D.A., Orozco-Duque, A.: Atrial fibrillation detection through heart rate variability using a machine learning approach and Poincare plot features. CLAIB 2016. IP, vol. 60, pp. 565–568. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_142

    Chapter  Google Scholar 

  38. Sim, I., et al.: Clinical decision support systems for the practice of evidence-based medicine. J. Am. Med. Inform. Assoc. 8(6), 527–534 (2001)

    Article  Google Scholar 

  39. Stewart, S., Murphy, N., Walker, A., McGuire, A., McMurray, J.: Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 90(3), 286–292 (2004)

    Article  Google Scholar 

  40. Yuan, C., Yan, Y., Zhou, L., Bai, J., Wang, L.: Automated atrial fibrillation detection based on deep learning network. In: 2016 IEEE International Conference on Information and Automation (ICIA), pp. 1159–1164. IEEE (2016)

    Google Scholar 

  41. Zhou, X., Ding, H., Wu, W., Zhang, Y.: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate. PloS One 10(9), e0136544 (2015)

    Article  Google Scholar 

  42. Zoni-Berisso, M., Lercari, F., Carazza, T., Domenicucci, S.: Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6, 213 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gennaro Laudato , Franco Boldi , Angela Rita Colavita , Giovanni Rosa , Simone Scalabrino , Aldo Lazich or Rocco Oliveto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laudato, G. et al. (2021). Combining Rhythmic and Morphological ECG Features for Automatic Detection of Atrial Fibrillation: Local and Global Prediction Models. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics