Skip to main content

Stochastic Workflow Modeling in a Surgical Ward: Towards Simulating and Predicting Patient Flow

  • Conference paper
  • First Online:
  • 780 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1400))

Abstract

Intelligent systems play an increasingly central role in healthcare systems worldwide. Nonetheless, operational friction represents an obstacle to full utilization of scarce resources and improvement of service standards. In this paper we address the challenge of developing data-driven models of complex workflow systems - a prerequisite for harnessing intelligent technologies for workflow improvement. We present a proof-of-concept model parametrized using real-world data and constructed based on domain knowledge from the Royal Infirmary of Edinburgh, demonstrating how off-the-shelf process mining, machine learning and stochastic process modeling tools can be combined to build predictive models that capture complex control flow, constraints, policies and guidelines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    NCEPOD Classification of Intervention [30].

  2. 2.

    http://www.github.com/apapan08.

  3. 3.

    Linear Temporal Logic, Metric Interval Temporal Logic.

  4. 4.

    \(E[X] = \sum ~x~ p(X\,=\,x)\).

References

  1. Stahl, J.E., et al.: Reorganizing patient care and workflow in the operating room: a cost-effectiveness study. Surgery 139(6), 717–728 (2006)

    Article  Google Scholar 

  2. Van der Aalst, W.E.A.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  3. Acid, S., et al.: A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service. Artif. Intell. Med. 30(3), 215–232 (2004)

    Article  Google Scholar 

  4. Ahmadi, S.A., et al.: Motif discovery in or sensor data with application to surgical workflow analysis and activity detection. In: M2CAI workshop, MICCAI, London. Citeseer (2009)

    Google Scholar 

  5. Akkerman, R., Knip, M.: Reallocation of beds to reduce waiting time for cardiac surgery. Health Care Manage. Sci. 7(2), 119–126 (2004)

    Article  Google Scholar 

  6. Back, C.O., Manataki, A., Harrison, E.: Mining patient flow patterns in a surgical ward. In: HEALTHINF, pp. 273–283 (2020)

    Google Scholar 

  7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge (2008)

    MATH  Google Scholar 

  8. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

    Article  MathSciNet  Google Scholar 

  9. Berti, A., et al.: Process mining for python (PM4Py): bridging the gap between process-and data science. In: ICPM Demo Track (CEUR 2374) (2019)

    Google Scholar 

  10. Blum, T., et al.: Workflow mining for visualization and analysis of surgeries. Int. J. Comput. Assist. Radiol. Surg. 3(5), 379–386 (2008)

    Article  Google Scholar 

  11. Bouarfa, L., et al.: Discovery of high-level tasks in the operating room. J. Biomed. Inform. 44(3), 455–462 (2011)

    Article  Google Scholar 

  12. Bouarfa, L., Dankelman, J.: Workflow mining and outlier detection from clinical activity logs. J. Biomed. Inform. 45(6), 1185–1190 (2012)

    Article  Google Scholar 

  13. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transfer 12(5), 391–403 (2010)

    Article  Google Scholar 

  14. Burattin, A., Maggi, F., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Exp. Syst. Appl. 65 (2015). https://doi.org/10.1016/j.eswa.2016.08.040

  15. Cochran, J.K., Bharti, A.: Stochastic bed balancing of an obstetrics hospital. Health Care Manage. Sci. 9(1), 31–45 (2006)

    Article  Google Scholar 

  16. Denton, B., et al.: Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manage. Sci. 10(1), 13–24 (2007)

    Article  Google Scholar 

  17. Fages, F., Rizk, A.: From model-checking to temporal logic constraint solving. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 319–334. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_26

    Chapter  Google Scholar 

  18. Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 7440–7447. IEEE (2015)

    Google Scholar 

  19. Funkner, A.A., et al.: Towards evolutionary discovery of typical clinical pathways in electronic health records. Proc. Comput. Sci. 119, 234–244 (2017)

    Article  Google Scholar 

  20. Béjar Haro, B., Zappella, L., Vidal, R.: Surgical gesture classification from video data. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 34–41. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_5

    Chapter  Google Scholar 

  21. Huang, Z., et al.: Summarizing clinical pathways from event logs. J. Biomed. Inform. 46(1), 111–127 (2013)

    Article  Google Scholar 

  22. Hulshof, P.J.H., et al.: Tactical resource allocation and elective patient admission planning in care processes. Health Care Manage. Sci. 16(2), 152–166 (2013)

    Article  Google Scholar 

  23. Jimenez-Ramirez, A., Barba, I., Fernandez-Olivares, J., Del Valle, C., Weber, B.: Time prediction on multi-perspective declarative business processes. Knowl. Inf. Syst. 57, 655–684 (2018). https://doi.org/10.1007/s10115-018-1180-3

  24. Kayis, E., et al.: Improving prediction of surgery duration using operational and temporal factors. In: AMIA Annual Symposium Proceedings, vol. 2012, p. 456. American Medical Informatics Association (2012)

    Google Scholar 

  25. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  26. Lalys, F., Jannin, P.: Surgical process modelling: a review. Int. J. Comput. Assist. Radiol. Surg. 9(3), 495–511 (2014)

    Article  Google Scholar 

  27. Lin, H.C., et al.: Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput. Aided Surg. 11(5), 220–230 (2006)

    Article  Google Scholar 

  28. Mans, R., et al.: Mining processes in dentistry. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 379–388. ACM (2012)

    Google Scholar 

  29. Martina, S., Paolieri, M., Papini, T., Vicario, E.: Performance evaluation of Fischer’s protocol through steady-state analysis of Markov regenerative processes. In: 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 355–360. IEEE (2016)

    Google Scholar 

  30. NCEPOD: NCEPOD classification of intervention. https://www.ncepod.org.uk/classification.html (2019). Accessed 22 Nov 2019

  31. Neumuth, T., et al.: Analysis of surgical intervention populations using generic surgical process models. Int. J. Comput. Assist. Radiol. Surg. 6(1), 59–71 (2011)

    Article  Google Scholar 

  32. NHS Scotland: National theatres project report. https://www.isdscotland.org/Health-Topics/Quality-Indicators/National-Benchmarking-Project/National-Theatres-Project/ (2006). Accessed 22 Nov 2019

  33. Paolieri, M., Horvath, A., Vicario, E.: Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2015)

    Article  Google Scholar 

  34. Royal College of Anaesthetists: Perioperative medicine: the pathway to better surgical care, London (2015)

    Google Scholar 

  35. Scutari, M.: Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw. 35(3), 1–22 (2010). http://www.jstatsoft.org/v35/i03/

  36. Stahl, J.E., et al.: Reorganizing patient care and workflow in the operating room: a cost-effectiveness study. Surgery 139(6), 717–728 (2006)

    Article  Google Scholar 

  37. Stauder, R., et al.: Random forests for phase detection in surgical workflow analysis. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 148–157. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07521-1_16

    Chapter  Google Scholar 

  38. Strum, D., et al.: Modeling the uncertainty of surgical procedure times: comparison of log-normal and normal models. Anesthesiology 92(4), 1160–1167 (2000)

    Article  Google Scholar 

  39. Taleb-Berrouane, M., Khan, F., Amyotte, P.: Bayesian stochastic petri nets (BSPN) - a new modelling tool for dynamic safety and reliability analysis. Reliab. Eng. Syst. Safety 193, 106587 (2020)

    Article  Google Scholar 

  40. Westergaard, M., Maggi, F.M.: Looking into the future: using timed automata to provide a priori advice about timed declarative process models. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_16

Download references

Acknowledgements

We would like to thank Cameron Fairfield and Stephen Knight for their generous feedback regarding policies and on-the-ground practices at the Royal Infirmary of Edinburgh surgical ward.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areti Manataki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Back, C.O., Manataki, A., Papanastasiou, A., Harrison, E. (2021). Stochastic Workflow Modeling in a Surgical Ward: Towards Simulating and Predicting Patient Flow. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics