Skip to main content

A Framework Based on Metabolic Networks and Biomedical Images Data to Discriminate Glioma Grades

  • Conference paper
  • First Online:
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Abstract

Collecting and integrating information from different data sources is a successful approach to investigate complex biological phenomena and to address tasks such as disease subtyping, biomarker prediction, target, and mechanisms identification. Here, we describe an integrative framework, based on the combination of transcriptomics data, metabolic networks, and magnetic resonance images, to classify different grades of glioma, one of the most common types of primary brain tumors arising from glial cells. The framework is composed of three main blocks for feature sorting, choosing the best number of sorted features, and classification model building. We investigate different methods for each of the blocks, highlighting those that lead to the best results. Our approach demonstrates how the integration of molecular and imaging data achieves better classification performance than using the individual data-sets, also comparing results with state-of-the-art competitors. The proposed framework can be considered as a starting point for a clinically relevant grading system, and the related software made available lays the foundations for future comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.med.upenn.edu/sbia/brats2018.html.

References

  1. Acharya, U.R., Hagiwara, Y., Sudarshan, V.K., Chan, W.Y., Ng, K.H.: Towards precision medicine: from quantitative imaging to radiomics. J. Zhejiang Univ. Sci. B 19, 6–24 (2018). https://doi.org/10.1631/jzus.B1700260

    Article  Google Scholar 

  2. Agren, R., Bordel, S., Mardinoglu, A., et al.: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8(5), e1002518 (2012)

    Article  Google Scholar 

  3. Antonelli, L., Guarracino, M.R., Maddalena, L., et al.: Integrating imaging and omics data: a review. Biomed. Signal Process. Control 52, 264–280 (2019). https://doi.org/10.1016/j.bspc.2019.04.032, http://www.sciencedirect.com/science/article/pii/S1746809419301326

  4. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  5. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  6. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  7. Beig, N., et al.: Radiogenomic analysis of hypoxia pathway reveals computerized MRI descriptors predictive of overall survival in glioblastoma. In: Proceedings of SPIE, vol. 10134, pp. 101341U–101341U-10 (2017). https://doi.org/10.1117/12.2255694

  8. Campos, B., et al.: Retinoid resistance and multifaceted impairment of retinoic acid synthesis in glioblastoma. Glia 63(10), 1850–1859 (2015)

    Article  Google Scholar 

  9. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: Computer-aided grading of gliomas combining automatic segmentation and radiomics. Int. J. Biomed. Imaging 2018, 2512037:1–2512037:11 (2018). https://doi.org/10.1155/2018/2512037

  10. Cho, H.H., Lee, S.H., Kim, J., et al.: Classification of the glioma grading using radiomics analysis. PeerJ 6 (2018). https://doi.org/10.7717/peerj.5982

  11. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  12. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural Information Processing Systems. MIT Press (2004)

    Google Scholar 

  13. Diehn, M., et al.: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. U.S.A. 105(13), 5213–5218 (2008). https://doi.org/10.1073/pnas.0801279105

  14. Ertosun, M.G., Rubin, D.L.: Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In: AMIA 2015 Annual Symposium Proceedings, pp. 1899–1908 (2015)

    Google Scholar 

  15. Fix, E., Hodges, J.: Discriminatory analysis, nonparametric discrimination: consistency properties. Technical report 4, USAF School of Aviation Medicine, Randolph Field, Texas (1951)

    Google Scholar 

  16. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 38(2) (2000)

    Google Scholar 

  17. Gevaert, O., Mitchell, L., Achrol, A., et al.: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1), 168–74 (2014). https://doi.org/10.1148/radiol.14131731

    Article  Google Scholar 

  18. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016). https://doi.org/10.1148/radiol.2015151169, pMID: 26579733

  19. Granata, I., Guarracino, M.R., Kalyagin, V.A., et al.: Model simplification for supervised classification of metabolic networks. Ann. Math. Artif. Intell. 88, 91–104 (2019). https://doi.org/10.1007/s10472-019-09640-y

  20. Guyon, I., Weston, J., Barnhill, S., et al.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002). https://doi.org/10.1023/A:1012487302797

  21. He, H., Bai, Y., Garcia, E.A., et al.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328, June 2008. https://doi.org/10.1109/IJCNN.2008.4633969

  22. Hariri, A.R., Weinberger, D.R.: Imaging genomics. Br. Med. Bull. 65(1), 259–270 (2003). https://doi.org/10.1093/bmb/65.1.259

    Article  Google Scholar 

  23. Jaffe, C.C.: Imaging and genomics: is there a synergy? Radiology 264(2), 329–331 (2012). https://doi.org/10.1148/radiol.12120871

    Article  Google Scholar 

  24. Jakola, A.S., Reinertsen, I.: Radiological evaluation of low-grade glioma: time to embrace quantitative data? Acta Neurochir. 161(3), 577–578 (2019). https://doi.org/10.1007/s00701-019-03816-5

    Article  Google Scholar 

  25. Kaneko, S., Kaneko, S.: Fluorescence-guided resection of malignant glioma with 5-ala. Int. J. Biomed. Imaging 2016 (2016)

    Google Scholar 

  26. Khawaldeh, S., Pervaiz, U., Rafiq, A., et al.: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl. Sci. 8(1) (2018). https://doi.org/10.3390/app8010027, https://www.mdpi.com/2076-3417/8/1/27

  27. Kong, J., Cooper, L., Moreno, C., et al.: In silico analysis of nuclei in glioblastoma using large-scale microscopy images improves prediction of treatment response. In: Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 87–90 (2011). https://doi.org/10.1109/IEMBS.2011.6089903

  28. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010. Quantitative Imaging in Cancer

  29. Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012). https://doi.org/10.1016/j.ejca.2011.11.036

    Article  Google Scholar 

  30. Law, M., Yang, S., Wang, H.A.: Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am. J. Neuroradiol. 24(10), 1989–1998 (2003). http://www.ajnr.org/content/24/10/1989

  31. Lee, G., Lee, H.Y., Ko, E.S., et al.: Radiomics and imaging genomics in precision medicine. Precis. Future Med. 1(1), 10–31 (2017). https://doi.org/10.23838/pfm.2017.00101

  32. Maddalena, L., Granata, I., Manipur, I., Manzo, M., Guarracino, M.: Glioma grade classification via omics imaging. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2 BIOIMAGING, pp. 82–92. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009167700820092

  33. Maratea, A., Petrosino, A., Manzo, M.: Adjusted f-measure and kernel scaling for imbalanced data learning. Inf. Sci. 257, 331–341 (2014)

    Article  Google Scholar 

  34. Melone, M.A.B., Valentino, A., Margarucci, S., Galderisi, U., Giordano, A., Peluso, G.: The carnitine system and cancer metabolic plasticity. Cell Death Dis. 9(2), 1–12 (2018)

    Article  Google Scholar 

  35. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  36. Miao, J., Niu, L.: A survey on feature selection. Procedia Comput. Sci. 91, 919–926 (2016). https://doi.org/10.1016/j.procs.2016.07.111, http://www.sciencedirect.com/science/article/pii/S1877050916313047. Promoting Business Analytics and Quantitative Management of Technology: 4th International Conference on Information Technology and Quantitative Management (ITQM 2016)

  37. Molinaro, A.M., Taylor, J.W., Wiencke, J.K., Wrensch, M.R.: Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 15(7), 405–417 (2019)

    Article  Google Scholar 

  38. Piromkraipak, P., et al.: Cysteinyl leukotriene receptor antagonists inhibit migration, invasion, and expression of MMP-2/9 in human glioblastoma. Cell. Mol. Neurobiol. 38(2), 559–573 (2018)

    Article  Google Scholar 

  39. Ranjbar, S., Mitchell, J.R.: Chapter 8 - An introduction to radiomics: an evolving cornerstone of precision medicine. In: Depeursinge, A., Al-Kadi, O.S., Mitchell, J. (eds.) Biomedical Texture Analysis, pp. 223–245. Academic Press (2017). https://doi.org/10.1016/B978-0-12-812133-7.00008-9

  40. Ravi, V., Madhankumar, A.B., Abraham, T., Slagle-Webb, B., Connor, J.R.: Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PloS One 14(9), e0221952 (2019)

    Google Scholar 

  41. Russo, D., et al.: Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J. 37(7), e97674 (2018)

    Google Scholar 

  42. Sala, E., et al.: Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72(1), 3–10 (2017)

    Article  Google Scholar 

  43. Scarpace, L., Flanders, A., Jain, R., Mikkelsen, T., Andrews, D.: Data from REMBRANDT. Cancer Imaging Arch. 12 (2005). https://doi.org/10.7937/K9/TCIA.2015.588OZUZB

  44. Smedley, N.F., Hsu, W.: Using deep neural networks for radiogenomic analysis. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1529–1533, April 2018. https://doi.org/10.1109/ISBI.2018.8363864

  45. Sun, Q., et al.: Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis. Cell Death Differ. 25(6), 1160 (2018)

    Article  Google Scholar 

  46. Tea, M.N., Poonnoose, S.I., Pitson, S.M.: Targeting the sphingolipid system as a therapeutic direction for glioblastoma. Cancers 12(1), 111 (2020)

    Article  Google Scholar 

  47. Togao, O., Hiwatashi, A., Yamashita, K., et al.: Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro-Oncology 18(1), 132–141 (2016). https://doi.org/10.1093/neuonc/nov147

  48. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

  49. Yang, W., Wang, K., Zuo, W.: Neighborhood component feature selection for high-dimensional data. JCP 7, 161–168 (2012)

    Google Scholar 

  50. Yang, Y., et al.: Glioma grading on conventional MR images: a deep learning study with transfer learning. Front. Neurosci. 12 (2018). https://doi.org/10.3389/fnins.2018.00804

  51. Zacharaki, E.I., Wang, S., Chawla, S., et al.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62, a609–1618 (2009). https://doi.org/10.1002/mrm.22147

    Article  Google Scholar 

  52. Zhuge, Y., Ning, H., Mathen, P., et al.: Automated glioma grading on conventional MRI images using deep convolutional neural networks. Med. Phys. (2020). https://doi.org/10.1002/mp.14168

Download references

Acknowledgments

The work was carried out also within the activities of all the authors as members of the ICAR-CNR INdAM Research Unit. M. Manzo acknowledges the guidance and supervision of Prof. Alfredo Petrosino during the years spent working together. The authors would like to thank G. Trerotola for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Maddalena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maddalena, L., Granata, I., Manipur, I., Manzo, M., Guarracino, M.R. (2021). A Framework Based on Metabolic Networks and Biomedical Images Data to Discriminate Glioma Grades. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics