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Abstract. A temporal disease trajectory describes the sequence of diseases that a 

patient has experienced over time. Electronic health records (EHRs) that contain 

coded disease diagnoses can be mined to find common and unusual disease tra-

jectories that have the potential to generate clinically valuable insights into the 

relationship between diseases. Disease trajectories are typically identified by a 

sequence of timestamped diagnostic codes very similar to the event logs of 

timestamped activities used in process mining, and we believe disease trajectory 

models can be produced using process mining tools and techniques. We explored 

this through a case study using sequences of timestamped diagnostic codes from 

the publicly available MIMIC-III database of de-identified EHR data. In this pa-

per, we present an approach that recognised the unique nature of disease trajec-

tory models based on sequenced pairs of diagnostic codes tested for directional-

ity. To promote reuse, we developed a set of event log transformations that mine 

disease trajectories from an EHR using standard process mining tools. Our 

method was able to produce effective and clinically relevant disease trajectory 

models from MIMIC-III, and the method demonstrates the feasibility of applying 

process mining to disease trajectory modelling. 

Keywords: Disease trajectories, Process mining, Electronic Health Records. 

1 Introduction 

There is a small but growing body of literature exploring the generation of disease tra-

jectories using electronic health records (EHR) [1, 2]. The rich collection of patient data 

in the EHR is a valuable source to get an extensive trail of disease diagnoses over time 

[3]. Mining the trails of disease diagnoses and the temporal information may help to 

identify patterns in disease trajectories of clinical value. A better understanding of pat-

terns of disease  may advance precision medicine to improve care at an individual level 

[4] and improve medical understanding of common disease progression at the popula-

tion level [5, 6]. A study by Jensen et al. [7] had identified the disease trajectories of a 



2 

large cohort by combining a data-driven and statistical approach. However, their tra-

jectories were built based on overlapping pairs of diagnostic codes suggesting the pres-

ence of longer trajectories without confirming if such trajectories are available in the 

data. Based on this, we propose an improvement by incorporating process mining as a 

toolset and method for mining end-to-end disease trajectories. 

Process mining utilises a set of tools to discover process models using data from an 

organisation’s information system. Extracted data are transformed into an event log, a 

collection of activities and its corresponding timestamps, sometimes supplemented 

with additional attributes. There is now a large body of literature applying process min-

ing to the domain of healthcare, typically focussed on discovery of actual care processes 

[8], conformance to guidelines and enhancement to improve the quality of healthcare 

services [9], the safety of the patients, and better management of resources [10, 11]. 

Jensen et al. [7] defined a disease trajectory as the patient’s orderly series of diagno-
ses. The definition is comparable to the concept of a trace in process mining where a 

trace is the sequence of activities for an individual case [12]. We hypothesise that it 

should be feasible to apply process mining to discover a disease trajectory model [2]. 

To the best of our knowledge, this is the first time process mining has been used to 

identify disease trajectories from a real world EHR. 

In this paper, we present a novel disease trajectory mining method using process 

mining techniques applied to the MIMIC-III open access EHR database. We identified 

the sequence of diagnoses (trace) based on the temporal aspect of the patients’ admis-
sions, broke down each trace into pairs of diagnoses, statistically analysed the pair’s 
correlation and represented the identified disease trajectories using a directly-followed 

graph produced by standard process mining visualisation tools [12]. The research ques-

tions are as follow: Q1-Can disease trajectories be identified using a process-mining 

approach? Q2-What are the most followed trajectories and what exceptional trajecto-

ries are followed? Q3-Are there differences in trajectories followed by different patient 

groups (by sex, by age group, by mortality status)? And, Q4-What are the longest and 

shortest average time transition trajectories? 

2 Background 

Process mining provides a set of techniques and tools to uncover the real behaviour of 

processes from a range of perspectives including, but not limited to [12]: control-flow, 

performance, conformance, and organisational. There are three types of process min-

ing: first, process discovery to generate process models from event log data, second, 

process conformance to check either a process model conforms to an event log or vice 

versa and third, process enhancement to improve a process model using the information 

of the actual process recorded in the event log [12]. 

In healthcare, process mining techniques may help the clinicians answer questions 

associated to each characteristic of the healthcare processes (e.g. primary care, second-

ary care, tertiary care, etc.) [8]. The rich information in the EHR is the source of answer 
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to the four types of data science questions: “what happened?”, “why did it happen?”, 
“what will happen?”, and “what is the best that may happen?”. In this study, we fol-

lowed the most widely used methodology, the PM2 framework, which describes six 

process mining stages and defines the set of activities to complete each stage.  

The diagnostic codes available within electronic health records result from diagnos-

tic decisions made by clinical specialists after considering  the patient’s health problem 

[13]. Jutel [14] described the diagnosis as a process of assessing and making a formal 

judgement based on a specific physical symptom that takes place at a particular time 

involving both patient and doctor. Once the disease is determined it is recorded in the 

EHR using standard  diagnostic codes such as the World Health Organisation’s Inter-
national Classification of Diseases (ICD) [15]. 

3 Method 

The goal of this case study was to identify patients’ disease trajectories using a process-

mining approach. We conducted a retrospective cohort study of patients who were ad-

mitted to critical care using the MIMIC-III database as our data source [16]. The 

MIMIC-III database contains a detailed record of patients’ clinical care that has been 
de-identified to respect the sensitive nature of the data. It is available online to research-

ers (https://mimic.physionet.org) under an open access policy. We obtained access 

through two mandatory steps: a training program in human research subject protections 

and a data user agreement. The Process Mining Project Methodology (PM2) was fol-

lowed in this study as the methodology allows us to have multiple research questions 

that require iterations of analyses [17]. 

3.1 Data source for the case study 

MIMIC-III provides a database of de-identified electronic health records containing the 

medical history from 2001 to 2012 of 46,520 critical care patients extracted from the 

EHR of the Beth Israel Deaconess Medical Centre in Boston, USA [16]. The database 

includes data on patient demographics, laboratory tests, diagnostic codes (in ICD-9 

coding standard), medications, bedside monitoring, clinicians’ notes and reports, and 
death records (linked to Social Security Death Index for outpatient death). As part of 

the anonymisation process, the timestamps used in the MIMIC-III dataset have been 

intentionally shifted into the future (between 2100 and 2200) by a random offset gen-

erated for each patient. This means that the sequence of disease codes and the time 

intervals between disease codes has been preserved for individual patients but no com-

parisons between patients are possible. This does not affect disease trajectory mining, 

but does limit other process-mining approaches such as the identification of bottle-

necks. Our group has experience of applying process mining to MIMIC-III and in ear-

lier work have published a data quality assessment on the suitability of the various 

MIMIC-III data components that are compatible with process mining [18].  

https://mimic.physionet.org/
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3.2 PM2 for Disease Trajectory Mining 

In this section, we identify those sections of the PM2 that we have adapted for disease 

trajectory mining. For a full understanding of the PM2 method see [17].  

In Stage 1 (Planning), our research questions were identified from a literature review 

and confirmed by a project team composed of a clinician, and epidemiologist and pro-

cess mining and data science researchers. 

In Stage 2 (Extraction), we defined the scope by determining the granularity level of 

data, the time period, and attributes of interest. The MIMIC-III database contains ad-

missions of adult patients aged 16 years old or older [16] who were admitted to the 

hospital between 1 June 2001 and 10 October 2012. Only patients with at least two 

admissions were selected to capture the progression of the disease. Patients were fol-

lowed up for mortality status until the last available discharge as the last censoring date 

and time for those who died within the hospital. The censoring date for patients who 

died outside of the hospital is the date recorded in the social security master death index 

in the MIMIC-III database. We used the first 3-digit ICD-9 codes to indicate diagnoses, 

[19] but excluded codes known not to be related to development of diseases, e.g. ad-

ministration codes. Event data were extracted from the ADMISSIONS, PATIENTS, 

and DIAGNOSES_ICD tables in MIMIC-III database as the input for creating an event 

log (Table 1). The time of admission was used as the activity timestamp and the diag-

nostic code as the activity name. The patients were grouped according to their age in 

bands of 5 years. The attribute of age group was calculated from the patient’s age at 
first admission. 

In Stage 3 (Data Processing), we created the event log as defined in the PM2 by 
creating the views, then filtering and enriching them. The case identifier for each event 
was taken from the patient identifier (subject_id), the diagnostic code was used as the 

event name (diagnosis_code), and the admission time as the timestamp 

(admittime). The event log was filtered by removing recurring diagnostic codes 
(retaining the first occurrence), then reapplying the exclusion of patients with only one 
diagnostic code. The sequences of diagnostic codes for each patient in the event log 
informed a set of ordered pairs of diagnostic codes, D1→D2, where the diagnostic code 
D1 preceded the diagnostic code D2. For example, a patient’s event log, D1→D2→D3, 
informed two ordered pairs of diagnostic codes, D1→D2 and D2→D3. We excluded 
ordered pairs that occurred only once. To measure the strength of association between 
the ordered pairs, we compared the probability of diagnosis D2 occurring among patients 
who did and did not have a D1 diagnosis previously in the event log. This relative risk 
(RR) [20] indicated whether the D2 diagnosis was more incident in the group with a D1 
diagnosis (RR > 1), less incident in the group with a D1 diagnosis (RR < 1), or equivalent 
(RR = 1). The RR is calculated as  

  𝑅𝑅 = (𝑎∕(𝑎+𝑏))(𝑐/(𝑐+𝑑))  (1) 

where a is the number of patients having D1 and D2, b is the number of patients having 

D1 but not D2, c is the number of patients without having D1 but having D2, and d is 

the number of patients neither having D1 nor D2. 
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Table 1. Source of the required data from MIMIC-III database 

Variables Table source in 
MIMIC-III 

Field name 

Case identifier PATIENTS subject_id 

Event DIAGNOSES_ICD hadm_id, icd9_code, seq_num 

Activity name DIAGNOSES_ICD icd9_code (first 3 digits) 
ADMISSIONS hospital_expire_flag 
PATIENTS expire_flag (translated into 1:Dead, 0:End of data) 

Time stamps ADMISSIONS admittime,dischtime, deathtime 

PATIENTS dod, dod_hosp, dod_ssn, 

Sex PATIENTS gender 

Age* 
 

PATIENTS dob 

ADMISSIONS admittime 

Age group** PATIENTS dob 

 ADMISSIONS admittime 

* the age calculation using PATIENT’s dob and ADMISSIONS’s admittime. 
** the variable was added to group the patients’ age. 

Following Jensen et al [7], only pairs with RR > 1 were carried forward for further 

processing. For a given pair of diagnoses D1 and D2, it was possible for both D1→D2 

and D2→D1 trajectories to satisfy the RR > 1 threshold. Our goal was to identify dis-

ease trajectories that were acyclic, so we carried forward the dominant directionality of 

a given pair of diagnostic codes, only. We applied one-tailed binomial tests [21] to 

define the dominant directionality of pairs, i.e. D1→D2 or D2→D1. Using a signifi-

cance level of 𝛼 = 0.05, only ordered pairs of diagnostic codes with one statistically 

significant direction were carried forward to define the final pairlog.  

The final pairlog was transformed back into an event log and recurring diagnoses in 

each trace were merged to avoid loops. The event log was then enriched by adding 

attributes of age at admission, sex, age group and the mortality status. These attributes 

were not used to define the disease trajectory models, but allowed post-hoc analyses to 

determine differences between disease trajectories according to each attribute. The en-

riched event log was then loaded into ProM, an open-source process mining tool 

(https://promtools.org). A START and END event was added to every case in the event 

log to provide common start and end points of traces. The final event log then converted 

into the XES format. Common traces were grouped in trace variants using the Explore 

Event Log (Trace Variants/ Searchable/ Sortable) feature in ProM [22]. 

In Stage 4 (Mining and Analysis) we used ProM to analysed the event log to identify 

unique trace variants, performed process discovery, visualised the discovered model 

and performed conformance checking. For process analysis, we calculated descriptive 

summary statistics of the disease trajectories that were identified, including stratifica-

tion by patient groups. The event log was visualised using the Explore Event Log (Trace 

variants/ Searchable/ Sortable). The Interactive Data-aware Heuristics Miner (iDHM) 

[23] plug-in was used to discover the disease process models.  

The quality of the discovered models were evaluated using replay fitness, precision 

and generalisation [24]. Replay fitness is a measure of how many traces from the log 

can be reproduced in the process model, with penalties for skips and insertions. Preci-

sion is a measure of how ‘lean’ the model is at representing traces from the log. Lower 

https://promtools.org/
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values indicate superfluous structure in the model. Generalisation is a measure of gen-

eralisability as indicated by the redundancy of nodes in the model; The more redundant 

the nodes, the more variety of possible traces that can be represented. The value of each 

measure represents by a number between 0–1. Discovery and conformance checking 

used plugins in ProM. The Replay a Log on Petri Net for Conformance Analysis plug-

in for measuring the fitness [25], Align-ETConformance plug-in [26] for the precision, 

and the Measure Precision/Generalization plugin for measuring the generalisation. 

Other tools used in this study were PostgreSQL as the database management system of 

MIMIC-III, and Python through Jupyter Notebook [27]. 

4 Results 

An event log was extracted from an EHR to identify disease trajectories, pairs of diag-

noses were identified and analysed for correlation measurement and tested for direc-

tionality. The discovery algorithm is applied to produce the disease trajectory model 

and represented using the directly-followed graph. 

In Stage 1 (Planning), we aimed to mine the disease trajectory agnostically without 

any specific selection of diagnosis and time window. Following the literature review in 

section 2, we defined the main research question as: (Q1) Can disease trajectories be 

identified using a process-mining approach? Further questions added which were  mo-

tivated by the frequently posed question for process mining in healthcare [28]: (Q2) 

What are the most followed trajectories and what exceptional trajectories are fol-

lowed?(Q3) Are there differences in trajectories followed by different patient groups 

(by sex, by age group, by mortality status)? (Q4) What are the longest and shortest 

average time transition trajectories? 

In Stage 2 (Extraction), Of the 58,976 unique admissions in MIMIC-III from 46,520 

patients, there were 6,984 unique ICD-9 diagnostic codes used for 651,000 diagnoses. 

From this dataset, we excluded 172,685 (26.5%) diagnostic codes that are medically 

known to be codes related to external factors not directly related to the development of 

diseases [5], including pregnancy (ICD-9 3-digit codes 630-679, 760-779), general 

symptoms and signs not related to a disease (780-799), external cause (800-999, E800-

E999), and administration (V01-V89). We further excluded 436,483 (67%) secondary 

diagnostic codes and focused on the 41,832 primary diagnostic codes whilst there will 

be valuable opportunity in exploring the secondary diagnostic codes. 

In Stage 3 (Data Analysis), we composed the selected variables in a way that follows 

the minimum requirements of event log (see Fig. 1.a). The traces of each patients are 

illustrated in Fig. 1.b. We removed 2,692 (16.2%) recurrent diagnoses, retained the first 

occurrence, excluded patients with only one admission, and subsequently excluded pa-

tients who were less than 16 years old at their first ever admission. A total of 4,911 

patients remained in the event log consisting of 11,725 diagnostic codes. Fig. 1 shows 

the transformation of event logs into a log of ordered pairs of diagnostic codes (pair-

log)(see Fig. 1.c). The resulting pairlog contained 6,814 ordered pairs of diagnostic 

codes. Only 3,781 pairs remained after filtering for RR > 1 and the binomial tests for 
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directionality suggested there were 826 ordered pairs of diagnostic codes with a statis-

tically significant dominant direction. The resulting data contained 796 traces where 

each trace represents a patient’s disease trajectory. 
 

 

 

 
 

 
Fig. 1. Illustration of the transformation steps of event log for pairwise analysis. (a) The 

extracted event log from MIMIC-III; (b) the illustration of traces of diagnoses for each patient; 

(c) the transformed event log into pairlog. 

 

In the last step of filtering, we transformed the pairlog back to an event log and 

enriched with age at admission, sex, age group and the mortality status. We then loaded 

the enriched event log into ProM, artificial ‘START’ and ‘END’ events were added and 

then analysed the trace variants using the Explore Event Log feature. Among the 796 

traces, we further removed twenty traces that were unique to a single, individual pa-

tients as part of good anonymisation practice. Finally, the 776 common traces found in 

the event log were grouped into 81 trace variants. 

In Stage 4 (Mining and Analysis), there were eighty one unique trace variants in-

formed the processing discovery algorithms to answer the Q1. The conformance of the 

discovered disease trajectory model demonstrated fitness = 0.93, precision = 0.94, and 

generalisation = 0.92. Further evaluation was done by 5-folds cross-validation where 

the original event log was randomly divided into five groups of sub-event log equally. 

One sub-event log was used as the validation data and the remaining four sub-event 

logs as training data. The cross-validation process was done five times to allow each 

sub-event log used once as the validation data. The average value from the cross-vali-

dation are expected to be lower than the conformance, resulting fitness = 0.92 (SD: 

0.006), precision = 0.82 (SD: 0.06), and generalisation = 0.88 (SD: 0.02). This suggests 

that the discovered trajectory model (Fig. 2) is robust to sampling, allows the traces 

seen in the event log, is precise enough to not allow behaviour unrelated to what was 

seen in the event log, and general enough to reproduce future behaviour of the trajecto-

ries. 

subject_id diagnostic_code timestamp 

21 410 11/09/2134 12:17 

21 038 30/01/2135 20:50 

124 433 24/06/2160 21:25 

124 441 17/12/2161 03:39 

124 440 21/05/2165 21:02 

124 569 31/12/2165 18:55 

 

(a) The extracted event log 

 

subject_id Antecedent Subsequent Time1 Time2 

21 410 038 11/09/2134 12:17 30/01/2135 20:50 

124 433 441 24/06/2160 21:25 17/12/2161 03:39 

124 441 440 17/12/2161 03:39 21/05/2165 21:02 

124 440 569 21/05/2165 21:02 31/12/2165 18:55 

   

(c) The pairlog 

  

→

#21: 410→038 

#124: 433→441→440→569 

 

(b) The trace of diagnosis 
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Fig. 2. The directly-follow graph representation of Disease Trajectory Model of Critical Care 

patients in MIMIC-III with the minimum case frequency = 6. 

In respond to the Q2, among 776 patients there are 81 distinct trajectories (Table 2). 

The most-followed trajectory (n=80; 10.3%) was acute myocardial infarction to is-

chemic heart disease, which is consistent  with the published literature [7, 29, 30]. Sep-

ticaemia occurred most frequently (n=212; 27.3%), both as a precedent (n=50; 6.4%) 

and subsequent (n=162; 20.9%), with mortality in the end (n=143; 66.9%). This sup-

ported previous findings that it is associated with morbidity and mortality [16, 31]. 

There are three exceptional trajectories of two patients each (0.26%) (Table 2). 

Table 2. The three most-common and least-common trace variants. 

Traces (%) Trace Variant Median (months) Dead (%) Male (%) 

80 (10.31%) START→410→414→END 6.5 75 70 

62 (7.99%) START→410→428→END 3.9 72.58 54.84 

45 (5.80%) START→430→437→END 3.9 4.44 35.56 

… … … … … 
2 (0.26%) START→410→427→486→END 28.3 100 50 
2 (0.26%) START→507→491→482→END 43.6 50 100 
2 (0.26%) START→518→250→038→END 14.6 100 0 

ICD-9 Codes translation: 038 = Septicaemia, 250 = Diabetes mellitus, 410 = Acute myocardial infarction, 

414 = Ischemic heart disease, 427 = Cardiac dysrhythmias, 428 = Heart failure, 430 = Subarachnoid haem-

orrhage, 437 = Other and ill-defined cerebrovascular disease, 482 = Other bacterial pneumonia, 486 = Pneu-

monia, organism unspecified, 491 = Chronic bronchitis, 507 = Pneumonitis due to solids and liquids, 518 = 

Other diseases of lung. 
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The third question was (Q3) Are there differences in trajectories followed by dif-

ferent patient group? We answered the question by comparing trajectories by sex (male, 

female) and age band (18-34 years, 35-64 years, and >64 years). The male cohort con-

sisted of 447 patients with the median duration of follow-up 6.98 months (IQR 1.6 – 

28.2) where 252 cases (56.3%) ending in death. The most-common trajectory was acute 

myocardial infarction followed by other forms of chronic ischemic heart disease (56 

cases, 12.5%) with median interval 6.5 months (IQR 1.5 – 35.3). In the female cohort, 

there were 329 patients with the median duration of follow-up 7 months (IQR 2 – 24.4) 

where 176 cases (54.4%) ending in death. The most-common trajectory was subarach-

noid haemorrhage followed by other and ill-defined cerebrovascular disease (29 cases, 

8.8%) with median interval 3.4 months (IQR 2.3 – 7.5). The most-followed trajectory 

in a group of 18 to 34-year-old cohort was diabetes followed by hypertensive chronic 

kidney disease (3 cases) with median interval 55.8 months (IQR 33 – 56.5). For the 

group of 35 to 64 years, there were 44 cases (14.5%) with acute myocardial infarction 

followed by ischemic heart disease, with median interval 7.8 months (IQR 1.9 – 39.7). 

Among 329 cases in this age group, there were 133 cases (40.4%) ending in death. 

Patients in >64 years, there were 293 (68.1%) deaths while the most-common trajectory 

was acute myocardial infarction followed by heart failure, with median interval 4.7 

months (IQR 1.5 – 21.8). 

The fourth question was (Q4) What are the longest and shortest average time tran-

sition trajectories? The longest disease progression at 63 months was Ischemic heart 

disease to Diverticula of intestine while the shortest progression was Gastrointestinal 

hemorrhage to Liver abscess and sequelae of chronic liver disease with average time 

transition is less than a month (0.98) (Table 3). 

Table 3. The three longest and shortest average time interval trajectories in MIMIC-III. 

Antecedent Subsequent Mean* Median (IQR)** 

A. The three longest average time interval trajectories (descending) 
Chronic ischemic heart disease Diverticula of intestine 63 75.9 (54 – 84.8) 

Chronic ischemic heart disease Occlusion of cerebral arteries 52.7 51.2 (40.4 – 52.6) 

Chronic ischemic heart disease Heart failure 46 41.5 (4.6 – 89.7) 

B. The three shortest average time interval trajectories (ascending) 

Gastrointestinal hemorrhage 
Liver abscess and sequelae of 

chronic liver disease 
0.98 0.81 (0.6 – 1.3) 

Other diseases of endocardium Other diseases of pericardium 1 0.8 (0.6 – 1.13) 

Chronic bronchitis Other bacterial pneumonia 2.2 2.2 (1.6 – 2.7) 

*Mean is in months. **Median is in months (IQR); IQR = interquartile range. 

5 Discussion 

We present a case study of 776 patient admissions associated with 81 different disease 

transitions to demonstrate the feasibility of using a process-mining approach to reveal 

disease trajectories using a hospital electronic health record database. We show that the 

PM2 framework is suitable for mining disease trajectories and is complemented by the 

addition of descriptive summary statistics in Stage-3 (Data Processing). Our approach 
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applies a number of transformations to the data, which were adapted from published 

disease trajectory methods for constructing selected pairs of diagnoses with strong cor-

relation, followed by testing the pairs’ directionality to form the trajectories. 

Process mining offers techniques to discover disease trajectories and measure the 

quality of the algorithm to discover the trajectory model. In this work we presented 

replay fitness, precision, generalisation and cross-validation to validate the model. The 

process-mining approach opens opportunities to cross-reference discovered disease tra-

jectories with other critical care event data by defining workflows that can actioned 

using widely-available software. By conducting conformance checking, we have the 

indicators to show if the discovered model has a good quality. We note that the earlier 

study by Jensen et al. [7], did measure the robustness of their discovered disease trajec-

tory model with one indicator that is similar to the replay fitness in process mining. 

This approach is useful to validate that the final model conforms closely to the data. 

A particular benefit of the process-mining approach to constructing disease trajecto-

ries is that it may provide summaries of cases, events and time interval between occur-

rences of disease. For example, our method identified the trajectory of acute kidney 

injury (AKI) (584) followed by septicaemia (038) with an average interval of 16.22 

months. This finding supports the conclusion of [32] where sepsis was a frequent con-

sequence after AKI in intensive care setting. Also, the process-mining approach could 

provide an estimation of sepsis development after AKI as suggested in [33]. Our 

method also incorporates additional case attributes that easily facilitate outputs to be 

stratified by specific characteristics, e.g. sex, age group, and mortality status. For ex-

ample, although the data were not pre-stratified for females, process mining tools made 

it easy to query the event log to reveal a dominant trajectory in females – subarachnoid 

haemorrhage (430) followed by other and ill-defined cerebrovascular disease (437) – 

that agrees with previous research [34]. 

6 Conclusion 

In this paper, we have presented the mining of disease trajectories using a process-

mining approach. The mining used the MIMIC-III dataset which is comparable to many 

databases from EHR systems in use at hospitals across the world. Our study included 

the use of PM2 framework to mine a representative disease trajectory model from an 

EHR and addressed quality dimension standards. This study opens opportunities for 

future works in implementation of the technique using population sized EHR data. We 

believe the association of pairs of diagnoses might be improved by null hypothesis sig-

nificance testing of relative risk rather than magnitude-based testing. Future work might 

assess the sensitivity of the method to the choice of process discovery algorithm used 

to mine the disease trajectory model. 
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