Skip to main content

Process Model Discovery from Sensor Event Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 406))

Abstract

Virtually all techniques, developed in the area of process mining, assume the input event data to be discrete, and, at a relatively high level (i.e., close to the business-level). However, in many cases, the event data generated during the execution of a process is at a much lower level of abstraction, e.g., sensor data. Hence, in this paper, we present a novel technique that allows us to translate sensor data into higher-level, discrete event data, thus enabling existing process mining techniques to work on data tracked at a sensory level. Our technique discretises the observed sensor data into activities by applying unsupervised learning in the form of clustering. Furthermore, we refine the observed sequences by deducing imperative sub-models for the observed discretised data, i.e., allowing us to identify concurrency and interleaving within the data. We evaluated the approach by comparing the obtained model quality for several clustering techniques on a publicly available data-set in a smart home scenario. Our results show that applying our framework combined with a clustering technique yields results on data that otherwise would not be suitable for process discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. Rashidi, P., Youngblood, G.M., Cook, D.J., Das, S.K.: Inhabitant guidance of smart environments. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4551, pp. 910–919. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73107-8_100

    Chapter  Google Scholar 

  3. Nentwig, M., Stamminger, M.: A method for the reproduction of vehicle test drives for the simulation based evaluation of image processing algorithms. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1307–1312. IEEE, September 2010

    Google Scholar 

  4. Zhang, M., Sawchuk, A.A.: Motion primitive-based human activity recognition using a bag-of-features approach. In: Proceedings of the 2nd ACM SIGHIT Symposium on IHI 2012. IHI 2012, ACM Press, pp. 631–640 (2012)

    Google Scholar 

  5. Diete, A., Sztyler, T., Weiland, L., Stuckenschmidt, H.: Improving motion-based activity recognition with ego-centric vision. In: PerCom Workshops 2018, pp. 488–491. IEEE Computer Society (2018)

    Google Scholar 

  6. Sztyler, T., Carmona, J., Völker, J., Stuckenschmidt, H.: Self-tracking reloaded: applying process mining to personalized health care from labeled sensor data. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 160–180. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_8

    Chapter  Google Scholar 

  7. Larue, G.S., Rakotonirainy, A., Pettitt, A.N.: Predicting reduced driver alertness on monotonous highways. IEEE Pervasive Comput. 14(2), 78–85 (2015)

    Article  Google Scholar 

  8. Weerdt, J.D., van den Broucke, S., Vanthienen, J., Baesens, B., : Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)

    Google Scholar 

  9. Choi, S., Kim, E., Oh, S.: Human behavior prediction for smart homes using deep learning, pp. 173–179. IEEE, August 2013

    Google Scholar 

  10. Gallicchio, C., Micheli, A.: Experimental analysis of deep echo state networks for ambient assisted living. In: Bandini, S., Cortellessa, G., Palumbo, F. (eds.) Proceedings of the Third Italian Workshop on AI for Ambient Assisted Living. Volume 2061 of CEUR Workshop Proceedings, pp. 44–57. CEUR-WS.org (2017)

    Google Scholar 

  11. Wang, A., Chen, G., Shang, C., Zhang, M., Liu, L.: Human activity recognition in a smart home environment with stacked denoising autoencoders. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol. 9998, pp. 29–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47121-1_3

    Chapter  Google Scholar 

  12. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. arXiv e-prints (2017)

    Google Scholar 

  13. Lee, S., Lin, F.J.: Situation awareness in a smart home environment. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 678–683, December 2016

    Google Scholar 

  14. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: Intelligent Environments, pp. 214–221. IEEE (2012)

    Google Scholar 

  15. Sztyler, T.: Sensor-based human activity recognition: overcoming issues in a real world setting. Ph.D. thesis, University of Mannheim, Germany (2019)

    Google Scholar 

  16. Nguyen, H.D., Tran, K.P., Zeng, X., Koehl, L., Tartare, G.: Wearable sensor data based human activity recognition using machine learning: a new approach. ArXiv abs/1905.03809 (2019)

    Google Scholar 

  17. Koschmider, A., Mannhardt, F., Heuser, T.: On the contextualization of event-activity mappings. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 445–457. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_35

    Chapter  Google Scholar 

  18. Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart spaces: perspectives and research challenges. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 298–304. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19243-7_28

    Chapter  Google Scholar 

  19. van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance on the basis of uncertain event-to-activity mappings. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 79–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_6

    Chapter  Google Scholar 

  20. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Mining process model descriptions of daily life through event abstraction. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69266-1_5

    Chapter  Google Scholar 

  21. Leotta, F., Mecella, M., Sora, D.: Visual process maps: a visualization tool for discovering habits in smart homes. J. Ambient Intell. Human. Comput. 11(5), 1997–2025 (2019)

    Article  Google Scholar 

  22. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction and local process models. In: RADAR+EMISA@CAiSE. Volume 1859 of CEUR Workshop Proceedings, pp. 55–63. CEUR-WS.org (2017)

    Google Scholar 

  23. Alharbi, A., Bulpitt, A., Johnson, O.: Towards unsupervised detection of process models in healthcare. Stud. Health Technol. Inf. 247, 381–385 (2018)

    Google Scholar 

  24. Tax, N., Alasgarov, E., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Generating time-based label refinements to discover more precise process models. J. Ambient Intell. Smart Environ. 11(2), 165–182 (2019)

    Article  Google Scholar 

  25. Brzychczy, E., Trzcionkowska, A.: Process-oriented approach for analysis of sensor data from longwall monitoring system. In: Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A. (eds.) ISPEM 2018. AISC, vol. 835, pp. 611–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97490-3_58

    Chapter  Google Scholar 

  26. Leemans, S.J.: Robust process mining with guarantees. Ph.D. thesis (2017)

    Google Scholar 

  27. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov. 2(2), 182–192 (2012)

    Article  Google Scholar 

  28. Munoz-Gama, J., Carmona, J.: A general framework for precision checking. Int. J. Innov. Comput. Inf. Control (IJICIC) 8(7), 5317–5339 (2012)

    Google Scholar 

  29. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE TKDE 31(4), 686–705 (2018)

    MathSciNet  Google Scholar 

  30. Guo, P., Miao, Z.: Multi-person activity recognition through hierarchical and observation decomposed HMM. In: 2010 IEEE International Conference on Multimedia and Expo, pp. 143–148. IEEE, July 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Janssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janssen, D., Mannhardt, F., Koschmider, A., van Zelst, S.J. (2021). Process Model Discovery from Sensor Event Data. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72693-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72692-8

  • Online ISBN: 978-3-030-72693-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics