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Abstract. This paper examines the optimisation of traffic signals to prioritise 
public transportation (busses) in real time. A novel representation for the traffic 
signal prioritisation problem is introduced. Through the novel representation a 
creative evolutionary process, while ensuring safe solutions that comply with 
real-world traffic signal constraints, is possible. The proposed system finds near-
optimal solutions in 20 seconds, enabling real-time optimisation. The author ex-
amines a specific junction in Hamburg, Germany. Based on real-world traffic 
data a variety of different problem scenarios ranging from low to exceptional 
traffic saturations are generated. In collaboration with domain experts a fitness 
function is defined to reduce the journey time of a bus while maintaining an over-
all stable traffic system. Candidate solutions are evaluated using the microscopic 
traffic simulator SUMO allowing for precise optimisation and addressing of the 
flow prediction problem. The results show good scaling of the proposed system, 
with more significant improvements in more congested scenarios. Given the re-
sults, future research on bigger and multiple road junctions is motivated. 

This work contributes to the field in four ways. Firstly, by defining a real-
world problem containing the actual intersection layout and traffic signal param-
eters. Secondly, by presenting a software design that integrates highly efficient 
SUMO simulation into an evolutionary algorithm. Thirdly, by introducing a 
novel representation that allows creative, unconventional solutions while ensur-
ing compliance with traffic signal regulations at all times. Lastly, by testing the 
suggested approach on various problem scenarios of the real-world problem. 

Keywords: Traffic Signal Prioritisation, Real-Time Traffic Simulation, Flow 
Prediction Problem, SUMO, Real-World Application. 

1 Introduction 

Traffic signals represent one of the most crucial parts of urban infrastructure. Uniquely, 
in comparison to other mechanism, these control when people stop or move. Traffic 
signals are planned by traffic engineers, where planning in this context refers to pro-
gramming an advanced logic that controls at what time signals switch between red and 
green to maximise traffic efficiency. The job of traffic engineers is becoming increas-
ingly challenging. The boom of the automotive industry through the 1970s pushed civil 
planners to favour motorised traffic when (re)planning city districts [1]. However, this 
approach heavily collides with the becoming increasingly more popular approach of 
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favouring green spaces, pedestrian friendly areas and mass transit [1] which leads to 
less available road real estate for motorised traffic. Additionally, the rise of urbanisation 
results in bigger, denser cities all over the globe [2]. In total, increasingly more people 
have to move through relatively less space to get from point A to B. Solving this prob-
lem is immensely important to improve life quality as well as economic value. 
 
Traffic signals are highly regulated [3] and require safe systems, as a high amount of 
trust is globally established. This makes the adoption of new approaches challenging 
and requires the close attention towards real-world constraints. 
 
The increasingly more important optimisation of public transportation presents an ad-
ditional problem. Over time, a number of ways for prioritisation have been proposed. 
Approaches vary in their modification to the existing road infrastructures. Dedicated 
bus lanes require a substantial change in behaviour from existing traffic. Not as ex-
treme, but similar are dedicated traffic signals. In terms of minimising the adjustment 
of existing infrastructure, simply prioritising the bus through modified green times pre-
sents the most efficient approach [4, 5]. 
 
When planning signals, engineers need to take driving patterns, average speeds and 
legal restriction into account. Their work is usually based on punctuated data. Public 
authorities count traffic during different times of the day in order to obtain low, average 
and high traffic saturations. Depending on the existing infrastructure a logic based on 
limited data can be programmed by the traffic engineers. However, they can never ac-
count for all possible traffic scenarios. Instead, assumptions must be drawn and a pro-
gram that works well for most scenarios is developed. However, a system that needs to 
work well in a large variety of circumstances can rarely perform optimal in a particular 
scenario. That is true, even if dedicated programs are designed to regulate traffic at 
certain times within a week. Additionally, traffic engineers need days or even weeks 
(depending on the problem) to plan and test signal plans. The task to prioritise public 
transportation makes this task even more challenging and rather impossible to account 
for all possibilities. 
 
Through the use of real-time traffic data, it is possible to build intelligent traffic signal 
systems (with prioritisation). The data allows to optimise signal plans in real time to 
improve overall traffic efficiency as well as prioritising public transport. However, in 
order to provide significant improvements, signals need to be generated in a creative 
manner without any restrictions and their quality needs to be validated. Most im-
portantly, the improved signals need to be safe as road users put trust in traffic lights. 
But simply being safe is not sufficient either as the improved signals need to vastly 
increase efficiency. This raises the question of how the real-time traffic data can be 
used to find optimised, yet safe signals in real time? 
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The field of traffic signal optimisation generally consists of Traffic Signal Control 
(TSC) and Traffic Signal Prioritisation (TSP). Whereas TSC aims to optimise the traffic 
in general, TSP aims to prioritise individual traffic members. In both fields, computa-
tional intelligence and in particular evolutionary algorithms have shown much promise 
in recent years. Additionally, for both fields, but especially for TSP, it is crucial to 
validate that the adjusted traffic signal program has the desired effect. Otherwise the 
optimisation might lead to a negative effect, which is commonly known as the flow 
prediction problem [6, 7]. Furthermore, most of the recent approaches only make small 
adjustments to the existing signal plan and often neglect real-world traffic signal con-
straints. 
 
This research seeks to answer the research questions: 

1. To what degree can an evolutionary algorithm work in real time to prioritise public 
transportation that tackles the flow prediction problem and complies with real-world 
traffic regulations? 

2. How can the impact of such a system be measured? 

 
In the following, a novel approach is proposed to integrate the microscopic traffic sim-
ulator SUMO into an evolutionary algorithm in order to allow for real-time traffic sig-
nal prioritisation. This work contributes to the field by 

1. Defining a real-world problem (intersection layout & traffic signal parameters) 
2. Presenting a software design that integrates highly efficient SUMO simulation into 

an evolutionary algorithm 
3. Introducing a novel representation that allows creative, unconventional solutions 

while ensuring compliance with traffic signal regulations at all times 
4. Testing the suggested approach on various problem scenarios of the real-world prob-

lem 

The focus of this work lies on the novel concept which requires additional refinements 
in future work. 

2 Literature Review 

Traffic signal control adjustments modify the parameters of traffic signals. Research on 
TSC algorithms started in the mid 20th-century [8]. Until today TSC remains a research 
field receiving close attention [8, 9]. Due to advancements in sensor-technology TSC 
methods can utilise real-time traffic data [8]. Approaches utilising real-time traffic data 
(e.g. induction loops, cameras) differ from classic, passive TSC approaches and are 
classified as adaptive [7]. 
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Even though adaptive TSC and TSP approaches are able to respond to current traffic 
scenarios, research is disunited if a passive or adaptive approach works better and is 
more likely to actually contribute in the real-world. In recent years Alba et al. focused 
on passive approaches, stating, “real time control of traffic-lights is not feasible because 
of various reasons (legal, technical, etc.), and we must instead find a highly-reliable 
global schedule of traffic-lights that works well in the dynamic and uncertain traffic 
system” [10]. 
Adaptive TSC approaches vary in their time criticality. While some systems might 
make fluent adjustments to account for traffic changes (e.g. unusual traffic caused by a 
sport event), others might need to react in a very short amount of time (e.g. to prioritise 
an emergency vehicle). In order to effectively prioritise an approaching bus, the signal 
needs to adapt to the current traffic situation immediately, resulting in little computa-
tional time. Of the research on traffic system control and prioritisation, only a small 
portion operates under short time constraints. As cycles are usually not longer than 90 
seconds, short time constrains refers to adjustment calculated within one cycle. 
 
Established commercial systems (e.g. SCOOT [11], SCATS [12], RHODES [13]) are 
able to prioritise public transportation under short time constrains, but the modifications 
to the signal plan are slight. Additionally, due to their commercial nature little to no 
detail on the computation of improved traffic signals is known. To the best of the au-
thors knowledge, and indicated by an extensive study [14], the most widely used com-
mercial systems do not use any kind of evolutionary algorithms. 
 
Adaptive approaches derive traffic information from sensors. Depending on the dis-
tance between the sensors and the traffic signal, additional assumptions about the be-
haviour of the recognized vehicles must be made. Minimising the error between reality 
and projection will become significantly more difficult, the further away the sensors 
are placed. This problem is commonly referred to as flow prediction problem and is 
one of the main reasons why adaptive TSC/TSP approaches fail or might even worsen 
the signals efficiency [7]. Even if the inconsistencies between real life traffic and the 
simulation could be minimised, it would remain extremely demanding to build a system 
capable of optimally adapting to any traffic scenario [15]. 
 
In passive approaches candidate solutions are often validated through the use of well-
established traffic simulators [10, 16, 17]. However, to the best of the authors 
knowledge, traffic simulators have not been integrated into real-time adaptive TSP ap-
proaches, presenting a gap in current research.  
 
Recent research in adaptive TSC/TSP often focuses on rule-based approaches that lim-
its the possible adjustments to the current signal plan. 
Zhang et al. propose an approach that uses predefined signal plans, by making only 
limited adjustments [18]. Another rule-based approach was proposed by Ma et al. [19]. 
The system utilises dynamic programming for solving the TSP as a multi-stage decision 
problem [19]. Ahmed & Hawas introduced a virtual queue to account for passenger 



5 

load in another rule-based TSP approach [20]. Instead of a rule-based approach Steva-
novic et al. introduced a genetic algorithm to optimise cycle length, green splits, offsets 
and phase sequences [21]. However, the algorithm does not operate in real time and can 
therefore not adequately conform to current traffic situations. 
 
Lastly, current research often neglects real-world traffic signal constraints. Whereas 
constraints like minimum and maximum green times are often taken into account, more 
advanced rules such as realistic intergreen times, early green signal for pedestrians and 
other, often country-specific, regulations are often disregarded. 
 
Overall, evolutionary algorithms and computational intelligence approaches in general 
have proven to be highly suitable for TSC and TSP problems. However, the reviewed 
TSC and especially TSP approaches often 

• do not account for real-world traffic signal constraints, especially advanced rules 
like realistic intergreen times 

• do not validate candidate solution through well-established microscopic simulators 
in real time, which would make the systems more trustworthy and would allow vis-
ualisation of solutions easily 

• lack the possibility to drastically change the signal program. Instead, less disruptive 
methods, like green extension are used 

• are based on pre-defined rules which disallows unconventional solutions 

These findings motivate this research to explore the use of evolutionary algorithms to 
generate (disruptive) signal plans in real time, which are validated through the use of a 
microscopic simulator. 

3 Methodology 

This chapter starts with the presentation of a real-world intersection in Hamburg, Ger-
many. Section 3.2 gives a short introduction to SUMO. The microscopic simulator is 
integrated into an evolutionary algorithm through a novel representation as presented 
in section 3.3.  

3.1 Problem Instance 

In collaboration with public authorities (domain experts) in Hamburg a simple, yet 
highly frequented intersection is selected. The junction consists of a main road towards 
the centre of Hamburg and a less used side street with residential buildings (see Fig. 2). 
 
To model this intersection in a traffic simulator, the intersection layout files, provided 
by the city of Hamburg, is used. The layout files contain important information such as 
the lane width and the exact position of the traffic signals. Additionally, traffic signal 
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parameters (e.g. intergreen times) is given. Therefore, the intersection portrays a real-
istic problem instance for the proposed approach. The intersection layout is also pub-
licly available for future research. 
 

Fig. 1. Real-World Junction Rodigalle/Jüthornstraße – Kielmannseggstraße 

3.2 Microscopic Traffic Simulation With SUMO 

Throughout the literature, researchers frequently use SUMO (Simulation of Urban Mo-
bility) [22, 23]. SUMO is a highly performant, open source, deterministic, microscopic 
traffic simulator written in C++ and developed by the Institute of Transportation Re-
search (IVF) at the German Aerospace Centre (DLR) [22]. Due to its performance and 
wide acceptance in similar research SUMO is chosen for this research. In this work, the 
use of a traffic simulator aims to tackle the flow prediction problem by validating the 
impact of a particular traffic signal plan. Traffic simulators are classified by their level 
of detail. Researchers mainly distinguish between macroscopic and microscopic mod-
els. Macroscopic simulators are more abstract, as not individual traffic, but rather traffic 
flows are simulated [24]. A macroscopic simulator aims to answer questions about the 
general traffic flow, rather than providing information about individual vehicle move-
ments. Significantly more accurate are microscopic simulators, which simulate the 
movement and behaviour of every vehicle at every time step. The model calculates the 
vehicles movement based on the vehicles physical abilities (e.g. acceleration rate) and 
the behaviour of the driver (e.g. reaction time, aggression level). SUMO is a micro-
scopic traffic simulator which therefore enables realistic simulations.  
 
A traffic simulation in SUMO mainly consists of three input files: a network file, a 
route file and an additional file. The network file represents the road layout. The route 
file contains the trips taken by road users over a given time span. The additional file 
can be used to place detectors or provide additional signal plans. [25] 
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For this research the network and routes are static for a given scenario. The network 
file is created using the official intersection layout files provided by the city of Ham-
burg. The route file contains the traffic volumes as defined in section 3.3. The additional 
file is used to represent the signal plan (candidate solution) to evaluate. 

3.3 Design of the Evolutionary Algorithm 

This section describes the integration of SUMO in an evolutionary algorithm for real-
time traffic signal prioritisation. In collaboration with domain experts two problem sce-
narios for traffic signal prioritisation are defined. These problem scenarios are used for 
the first experiment, presented in section 4.1. Additionally, in 4.2 a range of problems 
is generated from these problem scenarios to gain further insights. 
 
In the first problem scenario a relatively low, realistic traffic volumes is defined. For 
the second problem scenario the network is deliberately congested (e.g. due to road-
work or a sport-event). The purpose of this is to examine how the proposed algorithm 
performs in drastically different situations. In both cases the algorithm is tasked to pri-
oritise a single bus that entered the simulation after 20 seconds and would take about 
10 seconds to reach the intersections in ideal conditions. In contrast to other similar 
approaches, the improved, generated signal plan runs for a couple of minutes and does 
not end with the bus reaching its destination, but rather when the last vehicle reaches 
its destination. This way, the algorithm can heavily prioritise the bus before giving pri-
ority to other connections.   

 
Fitness Function.  
In terms of the fitness function, other researchers usually try to minimize the average 
delay per vehicle/passenger [15, 26] or minimize the overall journey times [17]. In this 
research the journey time for the bus should be minimised as much as possible while 
maintaining a functional traffic system, meaning that other vehicles should still be able 
to reach their destination in a reasonable time. In collaboration with the domain experts 
the fitness function presented by Eq. 1 is defined, which the algorithm is tasked to 
minimised. The fitness  

 𝐹 = 0.7	 ×	𝐴! + 	0.3	 ×	𝐴"# (1) 

is mainly affected by the arrival time of the bus (𝐴!) but also by the overall simulation 
time for a certain number of vehicles, where 𝐴"# represents the time of the last vehicle 
to reach the destination. The weights 0.7 and 0.3 were set through informal experimen-
tation. Exploring different values for 𝐴! and 𝐴"# is not part of this research but should 
be explored in future work to examine how the weight effects the resulting traffic con-
ditions. In a real-world use case, these parameters could be tuned by public authorities 
to easily change the priority of different traffic members and therefore enable parame-
terizable traffic regulation. 
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Solution Representation.  
In this research a candidate solution represents a signal plan. A signal plan consists of 
𝑛 phases each with a distinct duration and a state. The state has a fixed number of 
signals. These signals have to be (semi-) compatible to ensure traffic safety1. In SUMO 
a phase is represented by a phase tag with a duration and state attribute. The state rep-
resents the shown signals for all traffic lights at the intersection over the given duration. 
Therefore, the signals do not change throughout a phase, they change when transition-
ing to next phase. The state attribute consists of a list of signals. 𝑟 represents a red light, 
𝑢 a red & yellow light (used in Germany when switching from red to green), 𝑦 an amber 
(yellow) light, 𝑔 a green light with no priority (e.g. left-turning traffic) and 𝐺 a green 
light with priority (e.g. straight traffic). The signal is mapped to the traffic signal index 
of the junction (see Fig. 2. ). [28] 
 

Fig. 2.  Signal Plan Representation in SUMO Where the State of a Phase is Mapped to Specific 
Lanes of the Given Intersection 

A candidate solution is defined by the number of phases as well as the durations and 
states for each phase. As pointed out most prior research tries to reduce journey times 
while minimising the changes to the signal plan. This approach, however, aims to find 
disruptive solutions through maximising evolutionary creativity. To maximise creativ-
ity, the number of phases and phase durations can take any integer value between an 
according minimum and maximum value. For the states the proposed system picks sig-
nals from a set of available states with only (semi-)compatible signals. This way it is 
ensured that all signals are (semi-)compatible, without limiting the creativity. Ensuring 
safety is crucial as unsafe solutions could potentially produce (lethal) accidents. 
 

 
1 The connections of compatible signals do not cross. Semi-compatible signals may share the 

same conflict area, but priority must be clearly regulated (left-turning vehicles vs. oncoming 
vehicles) [27] 

<phase ...         /> 
<phase duration="15" state="gGgrrrrgGgrrrr"/> 
<phase ...         /> 
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The proposed, novel representation consists of two lists of integers. These lists must 
always have the same length as they represent the number of phases. The first list rep-
resents the durations ([10, 5]). The second list represents the (semi-)compatible states 
to use ([0, 1]). The values of the second list represent the index of a list of predefined 
phases with only (semi-)compatible states. Fig. 3 illustrates the representation in a sim-
plified manner. 
 

Fig. 3. Solution Representation (Simplified) Where the States Refer to a List of Predefined 
Phases with Only (Semi-)Compatible States 

 
Both durations and states are simultaneously optimised as they depend on another. Ad-
ditionally, intergreen times need to be considered. Intergreen times represent the yellow 
and red times to transition to the next green phase and are dependent on the road layout 
and not on traffic conditions. Therefore, the algorithm only evolves the durations and 
states that are not part of a signal change (intergreen times). 
 
For every state change a transition strategy is defined. The values of the transition strat-
egy represent: 

• the duration of the phase before switching to a specific state (fixed value, not opti-
mised by the algorithm) 

• a placeholder for the green time duration (dynamic value, optimised by the algo-
rithm, represented by the placeholder of -1) 

• the duration of the yellow phase after the green phase and the duration of the red 
phase (fixed value, not optimised by the algorithm) 

 
The SUMO signal plan is generated, and the duration of the green phases are replaced 
by the chromosome duration values. This allows for precise configuration per intersec-
tion while given the algorithm maximum creativity (see Fig. 4. ). 
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Fig. 4. Genotype to Phenotype Conversion Where Intergreen Times are Inserted for Every 
Transition 

Search Space.  
Given the proposed solution representation the search space 𝕊 is defined as 
 

																																															𝕊 = 2 𝑠	 ×	(𝑠 − 1)$	&	' 	× 	𝑑$	
(!"#

$	)	(!$%

																																			(2) 

 
where 𝑃*+$ and 𝑃*,- represent the minimum and maximum number of phases, 𝑠 the 
number of valid states and 𝑑 the number of possible phase duration. No split-second 
durations are considered as these are not supported by traffic signals in Germany. 
 
Given the problem instance the number of phases is set to a minimum of four and a 
maximum of eight. The phase durations are set to be between five and 60 seconds. In 
addition to the two valid states of giving east/west and north/south a green signal, four 
addition valid signals are defined. These give each direction exclusively a green signal 
to ensure maximum evolutionary creativity. These values result in a search space with 
4.5499	 ×	10'. possible solutions, demonstrating exploring even one percent of the 
search space will be too computational expensive given the goal of real-time prioritisa-
tion. Therefore, a fast converging evolutionary algorithm is needed. 
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Evolutionary Algorithm Parameterization.  
Based on similar research and in order to quickly converge to good solutions, the fol-
lowing parameters and operators are used. The population size is set rather low to allow 
for a high number of generations within the 20 seconds time limit. The algorithm is 
referred to as EA-FC throughout the paper. 

Table 1. Parameters for EA-FC  

Parameter Value 
Population Size 50 
Time Limit 20 Seconds 
Number of Children 10 
Selection Operator Tournament Selection 
Tournament Size 5 
Number of Parents 2 
Crossover Rate 1 
Crossover Operator One Point Crossover 
Mutation Rate 0.5 
Mutation Operator Swap Mutation 
Replacement Operator Worst Child with Probability Replacement 
Replacement Probability 0.5 

 
Over the course of this research four additional evolutionary algorithms were defined 
that favoured exploration over exploitation. Furthermore, two particle swarm optimis-
ers were tested. Overall, the presented EA-FC performed best in a variety of experi-
ments, hence other algorithms are not presented here. 

Evaluation Process and Software Architecture.  
Ideally, the proposed system would be compared to existing bus prioritisation systems. 
However, this is not possible for this research. Instead the algorithm is compared to the 
real-world fixed-time signal plan as well as a standard adaptive signal plan in SUMO 
that utilises on-road detectors. Future work should address the issue of neither plans 
prioritising the bus. The experiments presented here do however provide a valuable 
starting point. 
 
The proposed system is programmed in Java. The entire code is publicly accessible on 
GitLab (see 3.4). One virtual server with 6vcpus (approx. 3GHz per core), 16GB of 
RAM and an SSD is used. This configuration drastically exceeds what is possible lo-
cally at the traffic controller but could easily be achieved on a central server. As the 
algorithm is limited by time and the solution space is tremendously large, the number 
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of solutions that can be evaluated is key for the overall performance. The most compu-
tationally expensive tasks are the evaluation of a single chromosome, the evaluation of 
the entire population and the creation of a new child. These tasks are executed simulta-
neously in multiple threads. The number of threads equals the number of chromosomes 
to evaluate/children to create. 

3.4 Reproducibility 

As previously noted, the intersection layout and traffic data modelled in SUMO is pub-
licly available on GitLab. Additionally, the source code, a runnable java application 
and information for reproducing the presented experiments can be found in the reposi-
tory.2 

4 Results 

Two experiments are conducted. The first experiment demonstrates the performance of 
proposed algorithm in the two problem scenarios. The second experiment explores the 
algorithms robustness. 

4.1 First Experiment 

As evolutionary algorithms are non-deterministic, the EA-FC is executed 100 times per 
problem scenario. In the first scenario a relatively low, realistic traffic volumes is used. 
The results are shown in Fig. 5. . EA-FC is sometimes able to find solutions better than 
the fixed/adaptive signal plan. At best, the algorithms fitness is approximately one per-
cent better and at worst, approximately three percent worse than the fixed/adaptive plan. 
Noticeably, the journey time of the bus could not be optimised, therefore the fitness 
improves due to slight reductions of about three seconds for the overall journey time 
(𝐴"#). The results show that the proposed algorithm does work but is limited to minor 
improvements. 

Fig. 5.  First Scenario with Relatively Low Traffic Volumes  

 

 
2 https://gitlab.com/evostar/biology-inspired-prioritisation/ 

74 76 78 80 82
Fitness

EA-FC
76.1

74.7 77.7

Adaptive PlanFixed Plan
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In the second scenario a scenario with deliberate high traffic volumes is defined. The 
results, as presented in Fig. 6. The fixed plan has a fitness of 685.5 and the adaptive 
plan of 373.5. EA-FC significantly outperforms the fixed plan by up to 78% and the 
adaptive plan by up to 55%. The journey time of the bus could be reduced by up to 472 
seconds for the fixed and up to 214 seconds for the adaptive plan. Additionally, the 
overall journey time could be improved by up to 677 seconds for the fixed and up to 
119 seconds for the adaptive plan. The results demonstrate, that with increasing traffic 
volumes more significant improvements can be achieved. 

Fig. 6. Second Scenario with Deliberately High Traffic Volumes  

The improvements are especially significant as the EA only evaluates about 1,000 can-
didate solution within the 20 second time limit. The EA is able to perform just as good 
or better than the standard plans, while validating the quality of each candidate solution 
through the simulation in SUMO in real time. 

4.2 Second Experiment 

The second experiment aims to examine if the EAs are able to find good solutions re-
gardless of the traffic scenario. Beginning with the first problem scenario and linearly 
increasing traffic volumes up to the second problem scenario, 100 problem scenarios 
are generated.3 In this experiment the evolutionary algorithm is only run once per sce-
nario. 
Additionally, to further address the flow prediction problem, each candidate solution is 
evaluated multiple times on slightly different scenarios. This approach was inspired by 
Ferrer et al. [10].Candidate solutions are evaluated once on the standard traffic scenario 
and then on two additional scenarios that slightly vary. This is achieved through the 
random flag in SUMO. 

 
3 Due to the fact that the bus takes a different route in the two scenarios the first problem is 

modified, leading to different fitness values for the standard signal plans. 

145 150 155 160 165 170 175
Fitness

EA-FC
158.9

152.5 164.3
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Fig. 7. Evaluating the Algorithms Robustness  

The results, as shown in Fig. 7, clearly indicate that the EAs perform significantly better 
than the standard plan with increased traffic scenario. Additionally, it is shown that the 
adaptive, and especially the fixed plan are highly unreliable. The EA manages to relia-
bly find good solutions with little variance. 

5 Conclusion 

Traffic engineers face the near impossible task to develop near-optimal signal plans to 
ensure efficient urban mobility with steadily increasing population density. The in-
creasing need for smarter traffic signals to prioritise public transport through the use of 
emerging sensors and evolutionary algorithms motivated this research. 
 
This research seeks to answer the research questions: 

1. To what degree can an evolutionary algorithm work in real time to prioritise public 
transportation that tackles the flow prediction problem and complies with real-world 
traffic regulations? 

2. How can the impact of such a system be measured? 
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The flow prediction problem is often addressed through the use of a microscopic traffic 
simulator. However, to the best of the authors knowledge such simulators have not been 
implemented in real time approaches. The proposed system utilises SUMO to evaluate 
candidate solutions in real time in order to address the flow prediction problem. Due to 
the enormous size of the solution space, evolutionary algorithms are used to find near 
optimal solutions in only 20 seconds. This research introduces a novel representation 
to allow for creative solutions while complying to real-world traffic signal constraints. 
 
The conducted experiments demonstrate that the proposed approach is able to find op-
timised signal plans under short time constraints. Improvements could be achieved re-
liably, increasingly significant in scenarios with higher traffic saturations. 
 
First experiments of representing pedestrians in the simulation as well as further reduc-
ing the time limit to 10 seconds has shown much promise and should be further ad-
dressed. 
 
The proposed algorithm should be tested on additional problem scenarios to further 
explore its usefulness. Bigger intersections should be tackled as well as more complex 
layouts (e.g. bike lanes, dedicated lanes for turning traffic). To compare the results, the 
approach should be directly compared with other research and existing real-world pri-
oritisation systems. Additionally, a field test should be conducted to measure the per-
formance of the proposed system in the real-world. Algorithmic (e.g. population size) 
and domain specific (e.g. fitness weights) factors remained mostly fixed throughout this 
research and should also be further addressed in future work. Furthermore, the results 
should be discussed with traffic engineer, as these could include flaws that are spotted 
by the domain experts or could be inspirational for the traffic engineer. 
 
Comparing the results in terms of reduced journey time of this research to similar re-
searchers presents a challenging task. Firstly, this problem encompasses many variables 
that will differ in existing research - even if the research appears similar in nature (e.g. 
computational time, junction layout, traffic simulator). Secondly, the fitness function 
varies (e.g. minimising delay, minimising journey time). Thirdly, even if results could 
be compared, the results only present simulated values. A key strength of the conducted 
research is that real-world constraints were accounted for and the flow prediction prob-
lem was minimised through the use of real-time traffic data, a well-established micro-
scopic traffic simulator and multiple evaluates per candidate solution. Simply, compar-
ing the achieved improvement in journey time does not give an indication about how 
the system would perform in the real-world. Nevertheless, future work should make 
direct comparisons between the proposed system and similar research. 
On a meta level, to the best of the authors knowledge, the conducted research proposes 
a truly novel approach. Some researchers have shown the vast potential of evolutionary 
algorithms for TSC and TSP in combination with a microscopic simulator. Other re-
searchers demonstrated that it is also possible to make real-time adjustments under short 
time-constraints. However, to the best of the authors knowledge, the use of evolutionary 



16 

algorithms to optimise signal plans in real time through validation by a microscopic 
simulator has not been conducted yet. Therefore, this research addressed an important 
gap and proved that realistic factors do not have be neglected in order to improve signal 
plans in real time. 
 
Through the proposed approach in this article, traffic engineers could gain a powerful 
tool to ensure the efficiency of urban mobility. On a broader level, this presents a shift 
in paradigm, as traffic engineers focus on optimising a system that produces optimised 
signal plan, instead of spending days programming complex logic for a single intersec-
tion. The traffic engineer does not rely on historic traffic data as the proposed system 
adapts in real time. In addition to stationary hardware (e.g. infrared sensors), vehicle 
communication is on the horizon. With increasingly more real-time traffic data becom-
ing available, systems that incorporate real-time traffic data become more appealing. In 
conclusion, this novel approach presents a realistic solution to tackle the task of devel-
oping near-optimal signal plans to ensure efficient urban mobility in times of steadily 
increasing population density. 
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